• Title/Summary/Keyword: 선체 구조 모델

Search Result 71, Processing Time 0.025 seconds

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

Waterborne Noise Prediction of the Reinforced Cylinderical Shell Using the SEA Technique (SEA 기법을 이용한 보강 원통형 셀의 수중방사소음 해석)

  • 배수룡;전재진;이헌곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.107-112
    • /
    • 1992
  • 선박 내부에 탑재된 추진 기계류에서 발생되는 진동은 마운트 Deck을 통하 여 선체에 전달되어 수중으로 전파된다. 기계류에 의해 발생되는 수중방사소 음을 감소시키기 위해서는 선체로 전달된 진동수준 및 수중방사소음 예측이 우선 중요하다. 수중방사소음 예측 방법으로 FEM과 BEM에 의한 저주파수 대역 예측, 전달함수에 의한 실험적 예측, SEA(Statistical Energy Analysis) 기법을 이용한 고주파수 대역 예측으로 나눌 수 있다. R.H.Lyon 등에 의해 발전된 SEA 기법은 항공기, 선박등 복잡한 구조물의 고주파수 대역 진동해 석에 널리 이용되고 있다. SEA 기법의 선박에 대한 적용은 소형선박의 기계 류에서 발생되는 진동에 의한 선체 진동수준 및 수중방사소음 해석 등에 적 용되고 있다. 본 연구에서는 보강 원통형 셀 모델에 대한 수중방사소음을 SEA 기법을 이용하여 예측하고 실험을 통하여 검증하였다.

  • PDF

A Study on The Evaluation of Fracture Strength for Large Sized Structures Based upon Their Fracturing Characteristics (대형구조물의 파괴강도 특성 평가기술에 관한 연구)

  • Moon-Sik Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.102-111
    • /
    • 1993
  • One of the most important design procedures for large sized structures is the evaluation of fracture strength against fatigue and brittle fractures threatening to occur in their steel members. In this paper, the safety assessment based upon the knowledge about the fracturing characteristics of such ship structures was discussed, which can be estimated from such phenomena as fatigue crack propagation and brittle fractures, as obtained by employing fracture mechanics at the basic design stage. Model tests with a partial structure specimen of full size was carried out to authenticate a question as to whether or not the fracturing characteristics of such sophisticated structures could be estimated with precision from ordinary scale specimen tests, It was shown that the behviour of fatigue crack growth of large sized structures in this study could be predicted from the results of ordinary scale specimen test.

  • PDF

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

Development of Conformance Testing Criteria for STEP AP218 (Ship Structure) (선체구조 모델 데이터의 교환 표준에 따른 적합성 시험 기준의 개발)

  • Hwang, Ho-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.74-81
    • /
    • 2010
  • Ship STEP is the international standard for the exchange of ship modeling data between heterogeneous systems. It is expected that STEP AP218 can be used for seamless data exchange between various CAD/CAM/CAE systems used in the shipbuilding design process. Although the conformance assessment for standards would maximize the performance and confidence about data exchanges, most research has been directed toward interoperability testing. ISO SC4/TC184 only provides the method for conformance testing, and it can be used with test cases on application protocols. Even though standards have been defined for conformance assessment and testing, there is no organization or association. CAD vendors have focused on interoperability testing for evaluation of the performance of their systems. In this paper, the conformance testing criteria for AP218 have been developed with abstract test cases of ship structures. The requested STEP translator was also reviewed with a developed item pool of testing criteria. The criteria methodology would be a guideline for the development of translators and interfaces. The item pool method of testing criteria for conformance assessment would increase performance and efficiency of data translators for Ship STEP and other standards.

Development of an Hull Structural CAD System based on the Data Structure and Modeling Function for the Initial Design Stage (초기 설계를 위한 자료 구조 및 모델링 함수 기반의 선체 구조 CAD 시스템 개발)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.362-374
    • /
    • 2006
  • Currently, all design information of a hull structure is being first defined on 2D drawings not 3D CAD model at the initial ship design stage and then transferred to following design stages through the 2D drawings. This is caused by the past design practice, limitation on time, and lack of hull structural CAD systems supporting the initial design stage. As a result, the following design tasks such as the process planning and scheduling are being manually performed using the 2D drawings. For solving this problem, a data structure supporting the initial design stage is proposed and a prototype system is developed based on the data structure. The applicability of the system is demonstrated by applying it to various examples. The results show that the system can be effectively used for generating the 3D CAD model of the hull structure at the initial design stage.

A sea trial method of hull-mounted sonar using machine learning and numerical experiments (기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안)

  • Ho-seong Chang;Chang-hyun Youn;Hyung-in Ra;Kyung-won Lee;Dea-hwan Kim;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.293-304
    • /
    • 2024
  • In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.

Structural Damage and Residual Strength of Ships in Grounding with a Forward Speed (전진형 좌초시 선박의 구조손상 및 잔류강도)

  • J.K. Paik;T.K. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.73-86
    • /
    • 1995
  • In this paper, the mechanics of ships in grounding with a forward speed is analyzed. A raking damage estimate model in grounding of ships is proposed. The accuracy and applicability of the model are verified by a comparison of experimental results. The progressive collapse analysis of damaged gull sections under vertical bending moments is described by using the ALPS/ISUM computer code. The procedure is applied to grounding simulation of a double hull tanker with a transverseless system.

  • PDF

Generation of 3D STEP Model from 2D Drawings Using Feature Definition of Ship Structure (선체구조 특징형상 정의에 의한 2D 도면에서 3D STEP 선체 모델의 생성)

  • 황호진;한순흥;김용대
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.122-132
    • /
    • 2003
  • STEP AP218 has a standard schema to represent the structural model of a midship section. While it helps to exchange ship structural models among heterogeneous automation systems, most shipyards and classification societies still exchange information using 2D paper drawings. We propose a feature parameter input method to generate a 3D STEP model of a ship structure from 2D drawings. We have analyzed the ship structure information contained in 2D drawings and have defined a data model to express the contents of the drawing. We also developed a QUI for the feature parameter input. To translate 2D information extracted from the drawing into a STEP AP2l8 model, we have developed a shape generation library, and generated the 3D ship model through this library. The generated 3D STEP model of a ship structure can be used to exchange information between design departments in a shipyard as well as between classification societies and shipyards.

A Simplified Bridge-vessel Collision Model Considering with the Rotational Motions of the Vessel (선체의 회전을 고려한 선박과 교량의 간이충돌모델)

  • Lee, GyeHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, to analyze the collision behaviors of the bridge super-structure and the vessel which the collision point is located far from its rotation center such as bridge of a vessel and equipments on a barge, the simplified collision model was proposed. The model was configured to denote the mass, stiffness and the nonlinear behaviors of the bridge and the vessel. The nonlinear equation of motions of the proposed model were numerically solved by 4th order Runge-Kutta method. The parametric studies were performed for various collision conditions by the standardized Korean barge vessel in term of barge width, and its effects to the maximum collision load of bridge were analyzed.