• Title/Summary/Keyword: 선속경화현상

Search Result 13, Processing Time 0.026 seconds

Usefulness Evaluation of Application of Metallic Algorithm Reducing for Beam Hardening Artifact Occur in Typical Brain CT Image (머리 CT영상에서 흔히 발생하는 선속경화인공물 감소를 위한 금속인공물감소 알고리즘 적용의 유용성 평가)

  • Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • The study attempted to use computed tomography images to determine the usefulness of the reduction in the axial reduction algorithm in the event of a metallic artifacts reduction in the image of the beam-hardening effect, which is known as the most effective method of reducing metallic artifact reduction in the image and the reduction of the metal produced in this study. As a result, the result is increased to 140 kVp to reduce the value of the CT value by 0.02 to 0.05 %, resulting in decreased axial effect (P > 0.05). The CT value decreased from 12.4 to 26.9 % when applied to the reduction of the metallic. 12.4 to 26.9 % (p<0.05). In addition, in the qualitative assessment by the clinical trial evaluation, it was assessed as 1.8 points after applying the MAR algorithm, In the resolution of resolution and contrast evaluations, the estimation of the decrease in metallic artifact effects was assessed as the metal was assessed to be scored 7.2 points after the MAR algorithm was evaluated. Therefore, in case of artifacts due to irreversible beam hardening effect, it is useful to reduce artifacts caused by beam hardening effect by using various methods derived from existing researches and scanning by applying the metal artifact reduction algorithm proposed in this experiment.

A study of beam hardening effect reduction occur in brain CT (Brain CT에서 발생하는 선속경화현상 감소방안에 관한 연구)

  • Kim, Hyeon-ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8479-8486
    • /
    • 2015
  • This study aim is occur in brain CT cause of beam hardening effect and reducing method, We will scan Bone opaque bead phantom on variation of image on the influence factor with equipment called 'Samatom Senation 16' with following listed herein : tube voltage, tube current, slice thickness, gantry angle, base line which affect beam-hardening effect. After that we are going to start Quantitative Analysis resulted in previous scanning and Qualitative Assessment with CT image sheet evaluation. result of quantitative analysis 140kVp $31.56{\pm}2.89HU$ on tube voltage, 150mA $-3.87{\pm}0.12HU$ on tube current, 3mm on slice thickness, and $13.31{\pm}1.03HU$ IOML on gantry angle which was the least beam-hardening effect. Like Qualitative Analysis, we went through Qualitative Assessment and most of valuers got a result of 140kVp on tube voltage, 150mA on tube current, 3mm on slice thickness. As before valuers evaluated gantry angle that scanned image from IOML or OML was the least beam-hardening effect occured. There are meaningful differences when we compare all theses factors statistically(P<0.05). therefore We consider that Minimizing artifact that caused by beam-hardening effect can provide better quality of image to deciphers and patients. if we rise tube voltage in permissible dose limit, set tube current in a limit that does not effect to image quality, use slice thickness too thin enough to harm resolution, use IOML or OML on gantry angle.

Evaluation of Retro recon for SRS planning correction according to the error of recognize to coordinate (SRS의 좌표 인식 오류 시 Retro recon을 이용한 수정 방법에 관한 평가)

  • Moon, hyeon seok;Jeong, deok yang;Do, gyeong min;Lee, yeong cheol;Kim, sun myung;Kim, young bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • Purpose : The purpose of this study was to evaluate the Retro recon in SRS planning using BranLAB when stereotactic location error occurs by metal artifact. Materials and Methods : By CT simulator, image were acquired from head phantom(CIRS, PTW, USA). To observe stereotactic location recognizing and beam hardening, CT image were approved by SRS planning system(BrainLAB, Feldkirchen, Germany). In addition, we compared acquisition image(1.25mm slice thickness) and Retro recon image(using for 2.5 mm, 5mm slice thickness). To evaluate these three images quality, the test were performed by AAPM phantom study. In patient, it was verified stereotactic location error. Results : All the location recognizing error did not occur in scanned image of phantom. AAPM phantom scan images all showed the same trend. Contrast resolution and Spatial resolution are under 6.4 mm, 1.0 mm. In case of noise and uniformity, under 11, 5 of HU were measured. In patient, the stereotactic location error was not occurred at reconstructive image. Conclusion : For BrainLAB planning, using Retro recon were corrected stereotactic error at beam hardening. Retro recon may be the preferred modality for radiation treatment planning and approving image quality.

  • PDF

A Development of Automatic Defect Detection Program for Small Solid Rocket Motor (소형 로켓 모타의 결함 자동 판독 프로그램 개발)

  • Lim, Soo-Yong;Son, Young-Il;Kim, Dong-Ryun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.31-35
    • /
    • 2010
  • This paper presents the development of automatic defect detection program using 3D computed tomography image of small solid rocker motor. We applied the neighbor pixel comparison algorithm with beam hardening correction for the recognition of defect. We made the artificial defect specimen in order to decide a standard CT value of defect. The program was tested with 150 small solid rocket motors and it could detect the disbond, crack, foreign material and void. The program showed more reliable and faster results than human inspector's interpretation.

Analysis of the O-Ring Deformation Behavior by the Computed Tomography (전산화 단층촬영에 의한 오링 변형 거동 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon;Park, Sung-Han;Lee, Hwan-Gyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The object of this study is to develop the examination technique for measuring the O-ring deformation behavior under the pressure and the squeezed condition simultaneously. The O-ring deformation measuring device in which two grooves were dug to insert the two O-rings was manufactured to be not deformed under the high pressure and the 1 mm and 0.1 mm gap were designed to measure the extrusion lengths under the internal pressure. The beam hardening correction, the histogram analysis and the dead zone correction were executed to exactly measure the shape of O-ring deformation and the lengths of the O-ring deformation were measured by the LSF and the ERF. The computed tomography applied the pressure of 0, 1.378, 4.902, 9.804, 15.692 MPa at 22.3% squeezed condition and the expanded diameter, contact length and extrusion depth were measured in each pressure. The shape of O-ring deformation was evaluated by the FEM to verify the results of measuring by the computed tomography and the area of O-ring was mutually compared to the area measured by the computed tomography.

Changes in the Standardized Uptake Value According to the Type of Metal of Dental Prosthesis in PET-CT Fusion Image (PET-CT 융합 영상에서 치과보철물의 금속 종류에 따른 표준섭취계수 값의 변화)

  • Han, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.117-122
    • /
    • 2018
  • In this study, HU(hounsfield unit) value of CT generated by dental prosthesis was measured according to the type of metal when PET-CT was performed, and the degree of distortion and standard deviation of SUV(standard uptake value) and to propose a method to reduce errors in image reading. PET-CT was performed using actual teeth, metal crown, gold crown, titanium, and zirconia dental prosthesis. Compared with general teeth, the SUV value increased with increasing HU value. The SUV value of metal crown, titanium, and zirconia was increased by 37% and the gold crown increased by 45.4%. In addition, image distortions were small in general teeth, metal crown, titanium, and zirconia, but hard curing of the gold crown occurred and image distortion occurred. Therefore, since the metal type of the dental prosthesis affects the SUV value, the NAC(non attenuation correction) PET image of the dental prosthesis can be helpful in the diagnosis of the patient using the gold material.

Development of Biopsy Assist Device on Computed Tomography Using 3D Printing Technology (3D 프린팅 기술을 이용한 전산화단층영상 기반 조직 생검 보조기구 개발)

  • Jeong-Wan Kim;Youl-Hun Seoung
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.151-157
    • /
    • 2023
  • The purpose of this study was to develop an assist device that could correct and support patient position during biopsy on computed tomography (CT) using 3D printing technology. The development method was conducted in the order of 3D design, 3D output, intermediate evaluation for product, final assist device evaluation. The 3D design method was conducted in the order of prior research data survey, measurement, primary modeling, 3D printing, output evaluation, and supplementary modeling. The 3D output was the 3D printer (3DWOX 2X, Sindoh, Korea) with additive manufacturing technology and the polylactic acid (PLA) materials. At this time, the optimal strength was evaluated to infill degree of product as the 3D printing factors into 20%, 40%, 60%, and 80%. The intermediate evaluation and supplementation was measured noise in the region of interest (ROI) around the beam hardening artifact on the CT images. We used 128-channel MDCT (Discovery 75 HD, GE, USA) to scan with a slice thickness of 100 kVp, 150 mA, and 2.5 mm on the 3D printing product. We compared the surrounding noise of the final 3D printing product with the beginning of it. and then the strength of it according to the degree of infill was evaluated. As a result, the surrounding noise of the final and the early devices were measured at an average of 3.3 ± 0.5 HU and 7.1 ± 0.1 HU, respectively, which significantly reduced the noise of the final 3D printing product (p<0.001). We found that the percentage of infill according to the optimal strength was found to be 60%. Finally, development of assist devices for CT biopsy will be able to minimize artifacts and provide convenience to medical staff and patients.

Usefulness of Dual Energy CT to Improve Image Quality Degradation due to Lens Shielding (수정체 차페로 기인한 화질저하 개선을 위한 듀얼 에너지 CT의 유용성)

  • Yoon, Joon;Kim, Hyeonju
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.969-977
    • /
    • 2019
  • Applying the bismuth shield used to reduce the radiation exposure, image quality may be reduced due to beam hardening caused by the shield during CT scan. Therefore, we tried to find out the energy range that can reduce image degradation by applying GSI mode of G company's dual energy CT and examine the possibility through experiment. As a result, after bismuth shielding, 118 ± 10.6 HU and 50.1 ± 14.6 HU at 50 keV after dual-energy CT scan were the most similar to the CT value before image deterioration(p> 0.05). It was measured 176.6 ± 7.1 and 138.3 ± 1.1 at 50 keV(p> 0.05). Experiments showed that the use of the shield during CT inspection inevitably degrades the image quality, but experiments show that the GSI function of the dual energy CT can maintain the image quality even when the shield is used. If the various shields are secured after the evaluation using the dual energy CT, it is expected to overcome the disadvantages of poor image quality caused by the use of the radiation shield for reducing the exposure, which is the biggest disadvantage of the CT scan.

A Study on the Artifact Reduction Method of Magnetic Resonance Imaging in Dental Implants and Prostheses (치아 임플란트와 보철에서 발생하는 자기공명영상의 인공물 감소방안 연구)

  • Shin, Woon-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1025-1033
    • /
    • 2019
  • Although magnetic resonance imaging without linear hardening of CT is recognized as a method of obtaining high contrast of tissue and excellent resolution image in brain disease and head and neck examination, magnetic susceptibility artifact is generated in case of metal implants in the oral cavity, which is an obstacle to image diagnosis. Therefore, an effort was made in this thesis to find a method to reduce artifacts caused by dental implants and prosthesis in MRI. Implant-induced artifacts in magnetic resonance imaging showed that the signal size increased with shorter TE in GE technique and was inconsistent with water temperature change. In SE technique as well, the signal size of water was generally higher than that of air, but the signal to noise ratio (SNR) was not different by air and temperature. In EPI technique, images with fewer artifacts were obtained quantitatively and qualitatively when there was more water than air, and the signal to noise ratio was measured the highest, especially at water temperatures of 20° and 30°. In conclusion, when examining using the EPI technique rather than the SE or the GE technique, obtaining brain diffusion using a 20° and 30° water bag reduces the magnetic susceptibility artifacts caused by implants and prosthesis, suggesting that it may provide images with high diagnostic value.

Evaluation of the Effect of Metal Artifacts Varying the Parameters of the Attenuation Map for the artificial Hip Joint in SPECT/CT (SPECT/CT에서 인공고관절에 대한 감쇠보정지도(Attenuation Map)의 매개변수 변화에 따른 금속 인공물(Metal Artifact)의 영향 평가)

  • Kim, Sang Gyu;Kim, Jung Yul;Park, Min Soo;Jo, Seung Hyun;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.3-7
    • /
    • 2014
  • Purpose SPECT/CT scan to be performed attenuation correction on the basis of CT induce an overestimation of the site due to the beam hardening artifact by metal cover and reduce the images quality. Therefore, this study using a phantom that has been inserted artificial hip joint investigated that effect on the SPECT/CT image causing by metal artifact for varying the parameters of the Attenuation Map. Materials and Methods Siemens Symbia T16 SPECT/CT equipment was used. Artificial hip joint was inserted to SPECT/PET phantom, 17 mm sphere of Bright Streak area in CT image was filled with Tc-99m so that the radiation activity was 8 times compared to background. And then Hot and Background was measured in varying Wide Beam Coefficient on Attenuation Map and RBR (Region to Background Ratio) of Metal and Non-Metal was calculated and analyzed depending on the presence or absence of the hip joint. Results It tended to hot count of Non-Metal and Metal to increase as the value of the manual mode is increased, hot count ratio with the group of both manual mode 0.5 and 0.4 is the best match. Also, in automatic mode, the ratio of RBRNon-Metal and RBRMetal was 1.135, statistically significant difference was not observed in the manual mode 0.5 and 0.4. Conclusion In the automatic mode of Wide Beam Coefficient in attenuation correction map, it was found that it is over-correction by 13.52%, it was possible to minimize the over-correction by the artifact in 0.5 and 0.4 of manual mode. Further studies should be performed in order to apply to a patient with the help of this and it is considered possible to reduce the over-correction by the metal artifact of an artificial hip joint for Hip-Resurfacing Arthroplasty patients, and to improve the diagnostic performance.

  • PDF