• 제목/요약/키워드: 선상 탱크

검색결과 2건 처리시간 0.017초

9% Nickel강이 적용된 Type-B LNG 연료탱크 선상가열의 물성 변화에 관한 연구 (A Study on the Variation of Physical Properties of Line-heated for Type-B LNG Fuel Tank with 9% Nickel Steel Plate)

  • 최경신;이지한;홍지웅;정원지
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.89-97
    • /
    • 2020
  • Container vessels continue to grow in size, led by global shipowner. Large ships can be loaded more cargo at a time, reducing the cost of transportation per teu. this eventually leads to economies of sale, in which the production cost per unit decreases with increasing output. in accordance with the 70th Convention of the Marine Environment Protection Committee of the International Maritime Organization, as of January 1, 2020, MARPOL Annex VI Regulation 14.1.3 will be effective. All vessels must be meet these criteria to reduce Sox emissions and reduce NOx emissions by reducing the content of manned sulfur oxides from 3.5% to less than 0.5%, otherwise IACS Member States Entry to the port is denied. in order to do that need to LNG storage tank. in this study characteristic of the material after line heating (600℃,700℃,800℃,900℃) of 9% Ni steel used in the manufacture of LNG fuel tank of ship were verified using by mechanical test. In the heating method by line heating. The initial properties of steel are changed by variables such as temperature, time, speed. The experimental data of line heating presented in this paper confirmed that the initial change of 9% Ni steel could be minimized.

수압시험 시 관 단면적 비 및 충수 속도별 탱크 내부 과압 발생에 관한 해석 (Analysis of Internal Overpressure by Pipe Cross-Sectional Area Ratio and Filling Rate in the Hydraulic Test of Shipboard Tank)

  • 김근곤;이탁기
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.460-472
    • /
    • 2023
  • This study was conducted based on the case of an accident (excessive deformation) that occurred during the hydraulic test of a shipboard tank manufactured in accordance with the design regulations. Over-pressure phenomenon was noted as the main cause of accidents in the process of testing tanks without physical damage, which can be found in external factors such as cross-sectional difference between inlet pipe and air pipe and higher water filling rate than the recommended one. The main goal of this paper is to establish a safe water filling rate according to the range of sectional area ratio(SAR) reduced below the regulations for each test situation. The simulation was conducted in accordance with the hydraulic test procedure specified in the Ship Safety Act, and the main situation was divided into two types: filling the tank with water and increasing the water head to the test pressure. The structural safety evaluation of the pressure generated inside the tank and the effect on the structure during the test was reviewed according to the SAR range. Based on the results, guidelines for the optimal filling rate applicable according to SAR during the hydraulic test were presented for the shipboard tanks used in this study.