• Title/Summary/Keyword: 선박 유체역학

검색결과 163건 처리시간 0.026초

선수 규칙파 중 KCS의 부가저항 및 운동성능 수치해석 (Numerical Simulations of Added Resistance and Motions of KCS in Regular Head Waves)

  • 서성욱;박선호
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.132-142
    • /
    • 2017
  • As the International Maritime Organization (IMO) recently introduced the Energy Efficiency Design Index (EEDI) for new ships building and the Energy Efficiency Operational Indicator (EEOI) for ship operation, thus an accurate estimation of added resistance of ships advancing in waves has become necessary. In the present study, OpenFOAM, computational fluid dynamics libraries of which source codes are opened to the public, was used to calculate the added resistance and motions of the KCS. Unstructured grid using a hanging-node and cut-cell method was used to generate dense grid around a wave and KCS. A dynamic deformation mesh method was used to consider the motions of the KCS. Five wavelengths from a short wavelength (${\lambda}/LPP=0.65$) to a long wavelength (${\lambda}/LPP=1.95$) were considered. The added resistance and the heave & pitch motions calculated for various waves were compared with the results of model experiments.

FW-H 방정식을 이용한 선박 추진기 날개통과주파수 소음의 수치예측과 모형시험 검증 (Numerical Prediction of Marine Propeller BPF Noise Using FW-H Equation and Its Experimental Validation)

  • 설한신;박철수;김기섭
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.705-713
    • /
    • 2016
  • Underwater noise produced by ships has been becoming an increasing issue. A dominantly contributing noise source is a ship propeller. Therefore, it is important to predict the propeller noise at the propeller design stages. This study applied the acoustic analogy based on Ffowcs Williams equation for the prediction of the marine propeller BPF noise. A marine propeller BPF noise is investigated experimentally as well as numerically. Propeller BPF noise measurement and propeller cavitation observation tests are performed in the KRISO medium size cavitation tunnel. Numerical prediction schemes of marine propeller BPF noise are presented together with the noise measurement method. Propeller BPF noise predictions and experiments are performed under the various propeller operating conditions including non-cavitating and caveating conditions. Numerical and experimental results are compared and analyzed. It is shown that numerical prediction results are generally in good agreement with the measured data.

선박 유압공급 장치용 사판식 유압 피스톤 펌프 내부 유동해석에 관한 연구 (A Study on the Internal Flow Analysis in Swash Plate Piston Pump for Marine Hydraulic Power Supply)

  • 이중섭;이정실;임종학;곽범섭;이호성;송철기
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.34-40
    • /
    • 2022
  • In this paper, a flow analysis of a swash-plate type hydraulic piston pump installed on a hydraulic flow supply system for marine vessels is presented. A model and governing equations for computational fluid dynamics (CFD) analyses of swash-plate type hydraulic piston pumps were built, and simulation results regarding the internal flow field of the pump were obtained. By analyzing the internal flow of the swash-plate type hydraulic piston pump, we can confirm the time-dependent stroke of each piston as the pump rotates. We also verified that by analyzing the pulsating flow against the slope of the swash plate, the simulation results match well with the experimental results. The natural frequency of the system was computed to be approximately 380 Hz by applying and analyzing the fast Fourier transform (FFT) of each swash plate slope evaluated.

그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션 (Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network)

  • 박태원;김인섭;이훈;박동우
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

합성곱 신경망과 복셀화를 활용한 선박 저항 성능 예측 (Prediction of Ship Resistance Performance Based on the Convolutional Neural Network With Voxelization)

  • 박종서;최민주;송지수
    • 대한조선학회논문집
    • /
    • 제60권2호
    • /
    • pp.110-119
    • /
    • 2023
  • The prediction of ship resistance performance is typically obtained by Computational Fluid Dynamics (CFD) simulations or model tests in towing tank. However, these methods are both costly and time-consuming, so hull-form designers use statistical methods for a quick feed-back during the early design stage. It is well known that results from statistical methods are often less accurate compared to those from CFD simulations or model tests. To overcome this problem, this study suggests a new approach using a Convolution Neural Network (CNN) with voxelized hull-form data. By converting the original Computer Aided Design (CAD) data into three dimensional voxels, the CNN is able to abstract the hull-form data, focusing only on important features. For the verification, suggested method in this study was compared to a parametric method that uses hull parameters such as length overall and block coefficient as inputs. The results showed that the use of voxelized data significantly improves resistance performance prediction accuracy, compared to the parametric approach.

GIS 웹사이트 기반 실시간 X-band 레이더 응용연구 (Application Study on Real-time X-band Radar based on GIS Web-site)

  • 양영준;이유경
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.321-322
    • /
    • 2022
  • 본 연구에서는 속초해수욕장 행정복지센터 옥상, 울릉도에 설치된 X-band 레이더를 통해 실시간으로 해양환경을 계측, 해석한다. 이후 해석결과를 Client PC로 전송하는 것을 목표로 한다. 계측결과를 전자지도, 전자해도를 활용하여, GIS(공간정보시스템)에 오버레이하고, 웹사이트를 통해 실시간 자료를 공유하고 웹서버를 통해 정보를 표출한다. 현재 웹사이트 상에는 CCTV정보 및 해양환경정보가 표출되지만, 향후 Open API활용 등 다양한 응용연구를 수행할 예정이다.

  • PDF

규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석 (Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave)

  • 박일룡;김광수;김진;반석호
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.

선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석 (Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship)

  • 모장오;김유택;김만응;오철;김정환;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.175-181
    • /
    • 2011
  • 본 연구에서는 선박용 폐열회수 발전시스템에 적용 가능한 100kW급 구심터빈의 설계 및 CFD 해석기법을 이용하여 열사이클 시스템 및 구심터빈 최적화를 위한 설계자료를 확보하는 것이다. 구심터빈은 스크롤 케이싱, 18개의 베인노즐, 13개의 로터 블레이드로 구성되며, 해석격자는 격자테스트를 통해 약 230만개 정도의 최적격자를 구성하였다. 질량유량 0.5kg/s, 회전속도는 75,000rpm, 입구압력은 195~620kPa 범위 내에서 8가지 조건으로 설정하였다. 베인노즐 내부로 증기가 유입된 후 출구로 갈수록 노즐의 압력면과 흡입면의 압력이 비슷해지면서 마하수가 거의 같은 값을 보였다. 입구온도와 압력이 $250^{\circ}C$, 352kPa 일 때 등엔트로피 효율은 74%, 기계동력은 108kW의 해석결과를 보이고 있다.

직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석 (Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method)

  • 양경규;남보우;이재훈;김용환
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.

CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구 (A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD)

  • 석준;박종천;신명수;김성용
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.