• Title/Summary/Keyword: 선박의 횡경사

Search Result 28, Processing Time 0.022 seconds

A Study on Lashing Standards for Car Ferry Ships Sailing in Smooth Sea Areas (평수구역을 운항하는 여객선의 차량고박 기준에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, cargo lashing has received much importance, to help prevent the sinking of passenger ships due to the failure of vehicle and cargo lashing during the transshipment of cargo. Consequently, the standards for lashing equipment and the structure of car ferries have been revised. According to the current standards, all vehicles loaded on a car ferry sailing in smooth sea areas must be secured if the wind speed and wave height exceed 7 m/s and 1.5 m, respectively. In this study, we measured the roll and pitch of a passenger ship sailing in smooth sea areas, and compared the measurements with the results of the New Strip Method (NSM). The vessel had a maximum pitch of 1.41° and a maximum roll of 1.37° at a wind speed of 6-8 m/s and a wave height of 0.5-1.0 m, and a maximum pitch of 1.49° and a maximum roll of 2.43° at a wind speed of 10-12 m/s and a wave height of 1.0-1.5 m. A comparison of the external forces due to the motion of the hull and the bearing capacity without lashing indicated that the bearing capacity was stronger. This suggests that vehicles without lashing will not slip or fall due to weather conditions. In future, the existing vehicle lashing standards can be revised after measuring the hull motions of various ships, and comparing the external force and bearing capacity, to establish more reasonable requirements.

A Proposal for the Calculation of the Boarding Capacity Considering the Stability of Excursion and Ferry Boats (유선 및 도선의 복원성을 고려한 승선정원 산출 제안)

  • Lee, Li-Na;Lee, Hong-Hoon;Choi, Jungyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.791-799
    • /
    • 2022
  • Among excursion and ferry boats, small boats with a length of less than 12 m are exempted from the stability standard according to the ship safety act. The boarding capacity of these small excursion and ferry boats is calculated by the seating area according to the excursion ship and ferry business act. Many excursion and ferry boats have installed deck structures such as awnings after launching. Therefore, this study attempted to analyze the cause of the accident by estimating the stability based on the case of an actual ferry boat capsizing accident. The analysis results indicated that passengers stood up to disembark at the same time while the boarding capacity was exceeded. However, even if the ferry boat complied with the boarding capacity, a possibility of capsize existed if the passengers on one side of the boat stood up. Therefore, the following were suggested to improve the safety: calculating the boarding capacity using the stability test and recommending the maximum total weight for the boarding capacity.

A Study on Securing a Stable GM for Each Ship Type Considering the Ship's Operating Status (선박의 운항 상태를 고려한 선종별 안정적인 GM 운용에 관한 연구)

  • Kim, Hong-Beom;Kim, Jong-Kwan;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.275-282
    • /
    • 2020
  • Recently, the occurrence of a ship capsizing was analyzed as the main cause of the lack of stability or loss because of the improper management of the center of gravity, the movement of cargo or heavy weight when excessive steering occurs or when navigating during bad weather. Thus, to prevent a ship from capsizing, it is necessary to secure stability to enable the ship's return to its upright position, even if a dangerous heel occurs. The GM is a crucial evaluation factor regarding stability, which the navigation officer uses to preserve stability. In this study, based on the stability data collected from the operating of ships for five years, The GM by ship's type according to the operating status was analyzed specifically such as a ship's length, breadth, and gross tonnage. The feature of the GM distribution according to a ship's length was confirmed, and after performing the correlation analysis between the breadth and the GM, the ratio of the GM to breadth was calculated, and the result was compared with the previous ratio. Additionally, a simple approximation formula and minimum GM for the estimation of the GM by ship type were proposed by the regression analysis of the GM using the gross tonnage (GT)/breadth (B) to reflect the trend of larger ships being built. The results of this study are expected to be used as data for the review of securing a stable GM on ships.

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

Estimation of Maximum Outward Heel Angle During Turning of Pure Car and Truck Carriers (자동차운반선 선회 중 최대 횡경사각 추정에 관한 연구)

  • Hyeok-beom Ju;Deug-bong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2024
  • The height of large car and truck carriers from the keel to the wheel house is 44 ~ 46 m, and as the car-carriers increases in size, it exhibits the 'top heavy' characteristic, where the upper section is heavier than the lower section. This study aims to estimate the maximum outward heel angle of the Golden Ray car-carrier (G-ship) during turning maneuvers for accident investigation and the prevention of similar accidents. The theoretically calculated maximum outward heel is 7.5° (at 19 kn, rudder angle 35°) with a GM of +3.0 m or higher, and 16.7° with a GM of +1.85 m. Meanwhile the experimentally modified maximum outward heel is 10.5° (at 19 kn, rudder angle 35°) with a GM of +3.0 m or higher, and 23.3° with a GM of +1.85 m. The G-ship is maneuvered during an accident at a speed of 13 kn, at starboard rudder angle of 10° to 20°, it changes course from 038°(T) to 105°(T) based on the instructions of the on-board pilot. At this time, the maximum outward heel is estimated to be between 7.8° and 10.9° at the port side, which is 2.2 times higher than the normal outward heel. In the IS code, cargo ships are required to exhibit a minimum GoM of +0.15 m or more. The maneuvered G-ship exhibits a GoM of +1.72 m. It is not maneuvered because it fails to satisfy the international GoM criteria and because its GoM is insufficient to counteract the heeling moment during the maneuver. This study is performed based on accident-investigation results from the Korea Maritime Safety Tribunal and the USCG.

A Study on the Initial Stability Evaluation of 4.99-Tons-Class Standard Fishing Vessels (4.99톤급 표준어선형 어선의 초기 복원성 평가에 관한 연구)

  • Hwewoo Kim;Sanghyun Kim;Sunwoo Lee;Hyeongseok Yoon;Hyogeun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.176-183
    • /
    • 2024
  • Assessing the stability of small fishing vessels is important to prevent capsize accidents in coastal waters that primarily occur on small fishing vessels. However, the regulations regarding stability assessment for small vessels under 24 m are inadequate according to the domestic Fisheries Act. Based on safety standards issued by the Ministry of Oceans and Fisheries in 2022 to enhance safety and welfare, vessels adhering to the enhanced safety standards for standard ship types are required to establish stability regardless of their length. This study aims to utilize these aforementioned standards to assess the stability of vessels under 24 m, investigating the suitability of applying these criteria to these vessels and examining the impact on various small vessels with different superstructures. Initially, a 4.99-ton fishing vessel designed according to the standard ship type was selected as the subject vessel. Compliance with the standards was evaluated based on the initial stability of the vessel using the transverse metacentric height (GM) and transverse restoring moment arm at the limit angle (GZα). Additionally, six types of small vessels with identical hull forms and specifications to the subject vessel were further examined using prevalent superstructure designs in small fishing vessels. The stability of the subject small vessel was also assessed. A study of a 4.99-ton standard fishing vessel confirmed that the safety standards for standard fishing vessels with enhanced safety welfare were applicable to small fishing vessels under 4.99-ton class and that the stability of small fishing vessels with superstructure modifications was not significantly changed.

8년여의 세월호 사고원인 규명활동 결과의 정리와 분석 (1/2)

  • 조상래
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.16-29
    • /
    • 2024
  • 2014년 4월 18일 오전 8시 48분경 전라남도 병풍도 인근 해역에서 세월호는 전복된 후 침몰하였다. 사고 당시 이 배에는 승객 443명과 선원 및 승무원 33명 모두 476명이 타고 있었고, 이 중 미수습자 5명을 포함하여304명이 생명을 잃었다. 그 동안 공식적인 사고원인 규명활동이 꾸준히 진행되어 이 사고의 원인을 규명하기 위한 조사가 네 차례 있었다. 하지만 아직까지 사고 원인이 무엇인지 명쾌하게 밝혀지지 않고 있다. 이 글에서는 먼저 그동안 있었던 네 차례의 공식적인 세월호 사고원인 규명활동을 정리하였다. 가장 먼저 사고원인 규명활동을 전개한 해양안전심판원 특별조사부는 2014년 사고 직후부터 그해 12월까지 활동하였다. 특별조사부 최종보고서에는 화물의 과적과 평형수 적재 부족으로 인한 선박복원성 기준 미달, 타각의 대각도 조타와 장시간 유지로 인한 부적절한 조타, 화물의 부실한 고박으로 인한 화물의 이동, 수밀문의 관리 부실로 인한 조기 침수와 비상대피장소(muster station)로의 승객대피 조치 미이행을 사고의 원인으로 들고 있다. 2015년 3월부터 2016년 6월까지 활동한 4·16세월호참사 특별조사위원회(특조위)는 '4·16 세월호 참사 특별 조사위원회 청산 백서'만을 간행하고 최종보고서를 제출하지 못한 채 활동을 종료하였다. 세월호 선체조사위원회(선조위)는 2017년 4월부터 2018년 8월까지 활동하였다. 선조위는 세월호 사고원인 규명을 위한 다른 기구에 비해 위원의 구성도 균형이 있었고, 직권사건 위주의 조사방법도 적절하였다. 또한 조타기와 조타 과실 여부, 급선회 항적 및 횡경사와 핀안정기의 물리적 손상에 관한 용역을 국내 여러 기관에 발주하였다. 뿐만 아니라 다양한 해양사고 원인규명 용역에 참여한 실적이 있는 영국의 기술용역회사인 Brookes Bell에 급선회와 빠른 침몰의 원인 조사를 요청하였다. 아울러 세계에서 가장 활발히 수조실험을 수행하고 있는 상업 연구소인 네덜란드의 MARIN에 수조시험과 시뮬레이션도 의뢰하였다. 하지만 아쉽게도 선조위는 서로 다른 사고 원인을 주장하는 두 권의 종합보고서를 간행하였다. 종합보고서로 '내인설' 종합보고서[6]는 타기 솔레노이드 밸브의 고착으로 시작된 급선회를 사고의 직접 원인으로 지목하고 있다. 하지만 '열린안' 종합보고서[7]에서는 수중체와의 충돌을 직접적인 사고 원인으로 밝히고 있다. 마지막으로 가습기살균제 사건과 4·16세월호 참사 특별조사위원회(사참위)가 2019년 3월부터 2022년 9월까지 활동하였다. 사참위는 위원으로 조선해양공학과 항해학 전문가가 포함되어 있지 않아 세월호의 사고원인 규명활동을 효과적으로 수행하기에는 적절하지 못하였다. 사참위는 주로 조타장치 고장에 따른 세월호 전타 선회현상 검증, 세월호 변형 손상부의 확인 및 원인 조사와 세월호 횡경사 원인과 침수과정 분석을 직권 과제로 추진하였다. 또한 네덜란드 MARIN에 자유항주시험을 추가로 의뢰하였으며, 핀란드의 NAPA group에도 복원성 계산과 침수해석을 의뢰하였다. 사참위는 선조위의 두 가지 사고원인에 대해 '내인설'의 솔레노이드 밸브 고착은 사고원인일 가능성이 매우 낮고, '열린안'의 수중체와의 충돌 시나리오는 근거가 부족함을 확인하였다. 이상에서 정리한 바와 같이 규명활동이 진행됨에 따라 사고원인이 수렴되어야 함에도 불구하고 아직까지 원인을 시원하게 밝히지 못하고 있다. 이 글에서는 사고원인 규명활동을 수행한 네 개 기구의 구성과 활동 내용을 비교하고, 사고조사 위원회의 바람직한 구성과 위원회의 운영 방법을 제시하고 있다. 또한 Brookes Bell 보고서에 수록된 출항 당시의 흘수에 근거한 배수량과 선미 램프의 폐쇄 전후의 횡경사각으로부터 도출한 GoM도 소개하고 있다. 아울러 출항 당시의 GoM값으로 추정한 사고 당시의 GoM값도 소개하고 있고, 수중체와의 충돌 시나리오를 후보 사고 시나리오에서 제외시켜야 할 이유도 열거하고 있다. 끝으로 해양사고 원인규명 활동이 보다 과학적으로 그리고 보다 합리적으로 이루어질 수 있기 위해 그리고 우리 사회의 안전문화 제고를 위한 몇 가지의 방안을 제시하고 있다. 또한 세월호 사고로 치른, 아직도 치르고 있는 희생을 딛고 해양안전문화가 한 걸음 더 나아가기 위해서는 세월호 사고의 원인을 반드시 규명해야 한다는 말씀으로 글을 마무리하고 있다.

  • PDF

Study on Cause Analysis of Capsizing Accident in Fishing Boat No. 66 Poongsung (어선 제66풍성호 전복사고 원인분석에 대한 연구)

  • Lee, Li-Na;Lee, Chang-Hyun;Ohn, Sung-Wook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.955-964
    • /
    • 2022
  • According to the statistics of maritime accidents statistics that have occurred in Korea over the past five years, maritime accidents caused by fishing boats have increased every year from 1,646 in 2016 to 2,100 in 2020. In particular, of the 378 capsizing accidents that have occurred in the past five years, 252 capsizing accidents of fishing boats account for a high proportion of 66.7%, therefore, it is urgent to come up with countermeasures. In this study, to determine the cause of the capsizing accident of fishing boat No. 66 poongsung, data such as stability and seawater inflow routes were collected, and the effects of waterproof, additional wood decks, and windbreakers on stability on were quantitatively analyzed. Additional decks, windbreakers, and waterproof installed in No. 66 poongsung cause initial list, deteriorate stability, and fail to meet fishing boat structural standards. In addition, it was analyzed that the stability was weakened due to the characteristics of the hull shape of No. 66 poongsung. To estimate the stability at the time of the accident, the stability at the time of the working in the fishing ground condition, amount of seawater inflow according to the change in sea conditions, hull oscillation situation, and change in stability due to the hull factor were calculated. As a result, the minimum GoM was satisfied at the time of working in the fishing ground, but it could not be restored at the maximum wave height of 4 m, and the minimum GoM was not satisfied at the maximum wave height of 4 m owing to the influence of seawater inflow and oscillation due to the hull list. However, the minimum GoM was satisfied if additional decks and windbreakers installation was excluded among the factors affecting the stability of No. 66 poongsung.