• Title/Summary/Keyword: 선박대기율

Search Result 28, Processing Time 0.023 seconds

A Study on the Gap between Theoretical and Actual Ship Waiting Ratio of Container Terminals: The Case of a Terminal in Busan New Port (컨테이너 터미널의 이론적 대기율과 실제 대기율 비교에 관한 연구: 부산항 신항 A 터미널을 대상으로)

  • Lee, Jung-Hun;Park, Nam-Kyu
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.2
    • /
    • pp.69-82
    • /
    • 2018
  • The number of ships serviced at the container terminals in Busan is increasing by 2.9% per year. In spite of the increase in calling ships, there are no official records of waiting rate by the port authority. This study attempts to compare the theoretical ship waiting ratio and actual ship waiting ratio. The actual ship waiting ratio of container terminals is acquired from the 2014 to 2016 data of PORT-MIS and Terminal Operating System (TOS). Furthermore, methods and procedures to measure the actual ship's waiting rate of container terminal are proposed for ongoing measurement. In drawing the theoretical ship waiting ratio, the queuing theory is applied after deploying the ship arrival probability distribution and ship service probability distribution by the Chi Square method. As a result, the total number of ships waiting in a terminal for three years was 587, the average monthly service time and the average waiting time was 13.8 hours and 17.1 hours, respectively, and the monthly number of waiting ships was 16.3. Meanwhile, according to the queuing theory with multi servers, the ship waiting ratio is 31.1% on a 70% berth occupancy ratio. The reason behind the huge gap is the congested sailing in the peak days of the week, such as Sunday, Tuesday, and Wednesday. In addition, the number of waiting ships recorded on Sundays was twice as much as the average number of waiting ships.

A Study on the Optimal Service Level of Exclusive Container Terminals (컨테이너 전용부두의 최적 서비스 수준에 관한 연구)

  • Park, Sang-Kook
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.2
    • /
    • pp.137-156
    • /
    • 2016
  • This study analyzes the optimal service levels of exclusive container terminals in terms of the optimal berth occupancy rate and the ships' waiting ratios, based on the number of berths. We develop a simulation model using berth throughput data from pier P, Busan New Port, a representative port in Korea, and apply the simulation results to different numbers of berths. In addition to the above results, we analyze the financial data and costs of delayed ships and delayed cargoes for the past three years from the viewpoints of the terminal operation company (TOC), shipping companies, and shippers to identify the optimal service level for berth occupancy rates that generate the highest net profit. The results show that the optimal levels in the container terminal are a 63.4% berth occupancy rate and 10.6% ship waiting ratio in berth 4,66.0% and 9.6% in berth 5, and 69.0% and 8.5% in berth 6. However, the results of the 2013 study by the Ministry of Maritime Affairs and Fisheries showed significantly different optimal service levels: a 57.1% berth occupancy rate and 7.4% ship waiting ratio in berth 4; 63.4% and 6.6% in berth 5; and 66.6% and 5.6% in berth 6. This suggests that optimal service level could change depending on when the analysis is performed. In other words, factors affecting the optimal service levels include exchange rates, revenue, cost per TEU, inventory cost per TEU, and the oil price. Thus, optimal service levels can never be fixed. Therefore, the optimal service levels for container terminals need to be able to change relatively quickly, depending on factors such as fluctuations in the economy, the oil price, and exchange rates.

An Analysis of Ship's Waiting Ratio in the Korean Seaports (국내 항만의 선박 대기율 실증 분석 연구)

  • Kim, Eun-Soo;Kim, Geun-Sub
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Port congestion has been recognized as one of the critical factors for port service competitiveness and port selection criteria. However, congestion ratio, the congestion index currently used by Korea, plays a very limited role in shipping companies' and shippers' selection of port and port authorities' decision making regarding port management and development. This is mainly due to the fact that this ratio is only calculated as the ratio of the number of vessels by each port. Therefore, this study aims to measure service level related to vessel entry and departure in Korea ports by evaluating waiting ratio(WR) according to terminals and vessel types. The results demonstrate that the waiting ratio of containerships and non-containerships is less than 4% and 15% respectively, which satisfies the reasonable level suggested by the UNCTAD and OECD. Port of Pohang is revealed to have the highest WR of 57% and among the terminals, No. 1 Terminal of the Shinhang area has the highest WR. In terms of ship types, WR of Steel Product Carrier is highest, followed by General Cargo Ship and Bulk Carrier at the Pohang Shinhang area. In addition to WR, berth occupancy ratio as well as the number and time of waiting vessels can be utilized to evaluate service level by ports and terminals from port users' perspective, and furthermore, to improve the port management and development policy for port managers or authorities.

Software Development for Optimal Productivity and Service Level Management in Ports (항만에서 최적 생산성 및 서비스 수준 관리를 위한 소프트웨어 개발)

  • Park, Sang-Kook
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.137-148
    • /
    • 2017
  • Port service level is a metric of competitiveness among ports for the operating/managing bodies such as the terminal operation company (TOC), Port Authority, or the government, and is used as an important indicator for shipping companies and freight haulers when selecting a port. Considering the importance of metrics, we developed software to objectively define and manage six important service indicators exclusive to container and bulk terminals including: berth occupancy rate, ship's waiting ratio, berth throughput, number of berths, average number of vessels waiting, and average waiting time. We computed the six service indicators utilizing berth 1 through berth 5 in the container terminals and berth 1 through berth 4 in the bulk terminals. The software model allows easy computation of expected ship's waiting ratio over berth occupancy rate, berth throughput, counts of berth, average number of vessels waiting and average waiting time. Further, the software allows prediction of yearly throughput by utilizing a ship's waiting ratio and other productivity indicators and making calculations based on arrival patterns of ship traffic. As a result, a TOC is able to make strategic decisions on the trade-offs in the optimal operating level of the facility with better predictors of the service factors (ship's waiting ratio) and productivity factors (yearly throughput). Successful implementation of the software would attract more shipping companies and shippers and maximize TOC profits.

An Estimation of the Average Waiting Cost of Vessels Calling Container Terminals in Northern Vietnam (북베트남 컨테이너 터미널에 기항하는 선박의 평균대기비용 추정)

  • Nguyen, Minh-Duc;Kim, Sung-june
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • Several studies have been completed on the topic of container terminals in Northern Vietnam. Few of them, however, deal with competition in terms of costs related to vessel waiting time or cargo handling. This paper estimates the average waiting cost per TEU for all the container terminals in Northern Vietnam. After average waiting time was first estimated by applying queuing theory, uncertainty theory was applied to estimated vessel daily cost. A simulation was performed to create a series of data representing waiting cost per TEU in relation to the rate of volume handled/capacity of each terminal. Non-linear regression based on this series was used to present a function for the relationship between the average waiting cost of each terminal and the rate of volume handled /capacity.

선박의 속도 저하를 고려한 운항효율제고에 관한 연구

  • Gong, Gil-Yeong;Lee, Bo-Gyeong;Lee, Yun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.198-200
    • /
    • 2013
  • 최근 국제해사기구(IMO)의 해양환경보호위원회에서(MEPC)는 선박에서 대기로 방출되는 CO2의 양을 최소로 하기 위해서 신조선 설계 건조시 에너지효율지수(EEDI : Energy Efficiency Design Index for new ships), 에너지 효율지표(EEOI : Energy Efficiency Operational Indicator), 그리고 에너지 효율관리 계획(SEEMP : Ship Energy Efficiency Management Plan) 지수들을 이용하여 전 세계 이산화탄소 배출 규제 방침을 운영하고 있다. 이러한 환경규제 강화와 발맞추어 세계 각국은 지속적인 Green-ship의 개발과 저탄소 고효율 선박의 운항을 위해 연구와 노력한다. 본 연구에서는 선박이 움직이는데 있어 동력이 시작되는 부분과 그 힘이 전달되어 운항자의 의식이 반영되어 선체의 이동으로 이어지기까지 흐름에 대해 도식 및 수식으로 정리하였다. 그리하여 해상의 상태와 이에 따른 운항결정이 어떤 결과를 초래할 수 있는지 살펴보고 이 부분에서 운항효율을 증대시킬 수 있는 부분에 대해 모색해 보았다. 또한 엔진의 상태에 따른 연료 절감율에 대해 살펴보고 보다 경제적 운항을 위한 적정 RPM과 속도 등에 대해서 고찰해 보았다. 이 같은 정리를 통해 앞으로의 Echo-ship, Green-ship의 연구방향에 대한 초석으로 삼고자 한다.

  • PDF

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

Optimizing Total Transport Cost Incurred under Specific Port System: With a Case of Managing POSCO-owned Berths (특수항만구조하에서의 물류비용 최적화에 관한 연구 - 포항제철의 원료부두 사례를 중심으로 -)

  • Kim, Weon-Jae
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.3
    • /
    • pp.42-55
    • /
    • 2010
  • This paper primarily deals with a decision-making for determining the number of voyages in each ship size under a specific port structure in order to minimize the total transport cost consisting of transport cost at sea, queuing cost in port, and inventory cost in yard. As a result of computer simulation using queuing model characterized by inter-arrival time distribution, we were able to find out some combination of voyage numbers of 3 ship-size(50,000-ton, 100,000-ton, and 200,000-ton), where the total transport cost can be minimized under a specific port structure. The simulation model also allows us to figure out any trade-off relationship among sea transport cost, queuing cost in port, and inventory cost in yard. Put it differently, an attempt to reduce the sea transport cost by increasing the number of voyages of the largest ship size, the transport cost incurred in both port and yard is hypothesized to be increased and vice versa. Consequently, Port managers are required to adjust the number of annual number of voyages allocated in each ship size, put into the sea lines for importing raw materials, in order to optimize the transport costs incurred under the specific port system. We may consider a net present value(NPV) model for performing an economic feasibility analysis on port investment project. If a total discounted net benefit, including cost savings, exceeds the initial investment for an additional berth construction, then we accept the port investment project. Otherwise, we reject the proposed port investment plan.

Characterization of Particulate Matters and Estimation of Emission Rates Exhausted from Diesel Locomotive Engines (디젤기관차 엔진에서 배출되는 대기오염물질의 특성 및 배출량 추정)

  • 박덕신;정우성;김동술
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.109-110
    • /
    • 2003
  • 우리나라에서의 철도는 도로교통에 비해 수송분담율이 상대적으로 낮지만, 2001년을 기준으로 1년 동안 824만 명을 수송하여 전체 여객 수송량의 약 6.2 %를 차지하고 있다. 최근 연구결과 비도로용으로 사용되고 있는 디젤엔진이 NOx와 입자상 오염물질 배출의 주요한 오염원으로 밝혀졌다. 국내외적으로 대기오염원 중 자동차나 트럭 등 도로용 차량에서 배출되는 오염물질에 대해서는 오래 전부터 관심을 기울여 왔지만, 디젤기관차, 선박 및 경작, 건설, 벌목, 채굴 장비 등을 포함하는 비도로용 이동오염원에 의한 오염물질 배출제어에 관해서는 논의가 거의 이루어진 적이 없었다. (중략)

  • PDF

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.