• Title/Summary/Keyword: 선박과 교량의 충돌

Search Result 50, Processing Time 0.025 seconds

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

해상교량과 해상풍력단지의 안전성 평가기법 조사 연구

  • Kim, Tae-Gyun;Byeon, Sang-Hyeon;Yang, Won-Jae;Im, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.471-473
    • /
    • 2013
  • 주요 통항로에 설치된 해상교량과 해상풍력단지는 선박의 안전항해에 지대한 영향을 미친다. 특히, 90년대 들어 국내에 다수 건설된 해상교량은 과거에 경험하지 못한 대규모 선박-교량 충돌사고의 유발 가능성을 예고하고 있다. 또한 국내 군산지역에 구축될 해상풍력단지 역시 선박과의 충돌 가능성을 내포하고 있다. 이 논문에서는 과거에 연구 개발된 해상교량과 해상풍력단지의 안전성 평가기법을 조사하고, 향후 실용화 방안을 모색하였다. 연구결과, 기존 연구결과를 토대로 위기관리 시스템을 구축하면 궁극적인 해양사고 예방이 가능할 것으로 고려되었다.

  • PDF

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.

해상교량 관련 해양사고 발생 현황 조사분석

  • Park, Yeong-Su;Park, Min-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.83-84
    • /
    • 2019
  • 2019년 2월 28일, 선장의 음주와 잘못된 선박 운항으로 러시아 선박의 광안대교 충돌 사고가 발생하였다. 유례없던 대형 선박의 대교 충돌로 국민들의 관심이 집중되었으나, 계속적으로 국내외에서 해상교량 관련 해양사고는 발생하고 있다. 해상교량 관련 해양사고는 다른 사고와 달리 육상에도 큰 피해를 미칠 수 있다는 점에서 사고 예방을 위한 노력이 필수적이다. 따라서 본 연구에서는 최근 10년간의 국내 외 해상교량 관련 해양사고를 조사하여 사고에 영향을 미치는 요인을 식별하고 영향을 미치는 정도를 분석했으며, 추후에 해상교량 관련 해양사고 예방을 위한 대책 마련 연구 진행 시 기초자료로 활용할 수 있을 것이다.

  • PDF

Ship Collision Risk Analysis of Bridge Piers (선박충돌로 인한 교각의 위험도 분석)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 2005
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions.

Maintenance of the Sea-crossing Bridge for Ship Collision Problems (선박충돌 문제에 대한 해상교량의 유지관리)

  • Bae, Yong-Gwi;Lee, Seong-Lo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.56-64
    • /
    • 2016
  • Damage of sea-crossing bridge by ship collision is related to estimate frequencies of overloading due to impact, and bridge accordingly must be designed to satisfy related acceptance criteria. Another important aspect is the management on increment of collision risk during the service period. In this study, related plan, main span length, air draft clearance and collision risk are analyzed for the interim assessment of Incheon Bridge focusing on the ship collision problem. In particular, for the increment of collision risk, the optimized navigation speed is proposed by reviewing the research findings and navigation guidelines etc. as a temporary expedient. Also basic procedure for reasonable prediction of target vessel and passage is established and probabilistic prediction method to embrace the uncertainty of the prediction is proposed as a fundamental solution. It is necessary to conduct further research on collision risk management and promptly carry out interim assessments of other marine bridges.

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.

A Protection Capacity Evaluation of Vessel Protective Structures by Quasi-Static Collision Analysis (준정적 충돌해석을 통한 선박충돌방공호의 방호능력평가)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, the vessel collision protective structure and the vessel were modeled numerically and the quasi-static collision analysis was performed to evaluate the maximum protection capacity. In the modeling process of protective structure, the nonlinear behaviors of structure and the supporting conditions of ground including pull-out action were considered. In that of collision vessel, the bow of vessel was modeled precisely, because of the nonlinear behaviors were concentrated on it. For the efficient analysis, the mass scaling scheme was applied, also. To evaluate the differences and efficiency, the dynamic analyses were performed for the same model, additionally. Based on the obtained energy dissipation curves of the structure and the vessel, the moment that the collision force affected to the bridge substructures was determined and the maximum allowable collision velocity was evaluated. Because of the energy dissipation bound can be recognized clearly, this scheme can be used efficient in engineering work.

Constraints of Variational Section of PSC Box Girder by Placing Piers for Protecting Ship Collision (선박충돌 방지를 위한 교각 위치에 따른 PSC 박스거더의 형상변화 구속조건)

  • An, Hyun-Jung;Kim, Hyo-Jin;Kim, Bong-Geun;Lee, Sang-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.41.2-41.2
    • /
    • 2010
  • 하천, 해상 등에 위치한 교량 설계시 선박충돌을 방지하기 위해 교각 위치를 변화시킬 필요성이 발생한다. 이 때, 교각 위치에 따른 변단면을 갖는 PSC(Prestressed concrete) 박스거더의 형상 변화를 효과적으로 변경하기 위해 고려해야하는 구속조건을 추출하고 정의하였다. PSC 박스거더는 변단면 시공에 일반적으로 적용되는 FCM(Free cantilever method) 공법이 착용된 교량을 착용했으며, 구속조건 정의를 위해 설계지침서를 분석하여 구속조건으로 작용하는 매개변수를 추출하였다. 정의한 구속조건의 적용성을 검증하기 위해 파라메트릭 모델링을 수행하였으며, 그 결과로 생성된 모델에 대한 물량을 산출하여 대상교량에서 산출된 실제 물량과 비교 분석하였다.

  • PDF

Ultimate capacity evaluation of Vessel protective structure by quasi-static analysis (의사정적해석을 통한 선박충돌방호공의 극한성능평가)

  • Lee, Gye-Hee;Hong, Kwan-Young;Kim, Se-Jeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.731-734
    • /
    • 2011
  • 본 연구에서는 강재로 구성된 선박충돌방호공의 최대방호능력을 산정하기 위하여 선박과 충돌방호공을 모델링하고 충돌거동을 해석하였다. 이러한 비선형충돌해석은 매우 큰 요소망과 고도의 비선형성을 려해야하기 때문에 이의 해석비용이 일반적인 해석에 비하여 매우 크므로 해석의 경제성을 확보하기 의사정적해석방법을 이용하여 해석을 수행하였다. 이 과정에서 효율적인 해석을 위한 수치 해석기법이 추가되었다. 해석결과 얻어진 선박과 방호공의 에너지소산곡선을 바탕으로 충돌선박이 교량하부구조에 도달하는 시점을 추정하고 이를 바탕으로 대상선박의 최대충돌속도를 산정하였다.

  • PDF