• Title/Summary/Keyword: 선미 스케그

Search Result 8, Processing Time 0.019 seconds

The Stern Hull Form Design using the Flow Analysis around Stern Skeg (선미 스케그 주위의 유동 분석에 의한 선미 형상 설계)

  • Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The optimized distance between skegs and angle of the skeg for a standard twin-skeg type LNG carrier were presented using the CFD and model tests. The evaluation method of self-propulsion performance was derived based on the results of CFD and confirmed the validity through model tests. The analyses to assess self-propulsion performance using CFD were shown by flow line patterns on the skeg surface, nominal wake distribution in the propeller plane and the evaluation for flow balance around stern skegs. The optimized ship that was applied to the optimized two design parameters in stern skeg arrangement for target ship was derived in this work. Finally speed performance of mother ship which is existing ship and optimized ship were compared through CFD and model tests. And the usefulness about the evaluation method of self-propulsion performance was reconfirmed.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seunghoon;Jung, Dongho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-kyu;Sung, Hong Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.185-188
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge is estimated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunker barge are in the form of towed ship connected to the tow line, the towing stability of the LNG bunker barge is very important for the safety of not only the LNG bunker barge but also the surrounding sailing vessels. The numerical code for towing simulation was developed to estimate the towing stability of the LNG bunker barge at the initial design stage. The MMG(Manoeuvring Mathematical Group) model was applied to the equations of motion and the empirical formula was applied to the maneuvering coefficients so that they could be used in the initial design stage. To validity of the developed numerical code, it was compared with published calculation and model test results. Towing simulations were carried out according to with and without stern skeg of the LNG bunker barge using the developed numerical code. Through the results of the simulations, the appropriateness of the stern skeg area designed was confirmed.

  • PDF

An Experimental Study On the Course-Keeping of an 8,000 DWT Barge ship (재화중량 8, 000 톤급 Barge선의 침로안정성에 대한 실험적 연구)

  • Chun, H.H.;Kwon, S.H.;Ha, D.D.;Ha, S.U.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.1-11
    • /
    • 1997
  • When a barge is towed by a tug boat using a tow line, the barge is frequently subject to a large sway motion induced from its inherent yaw motions. This large sway motion combined with external forces due to winds and waves may makes the towing to be difficult or even dangerous. It has been reported that in worse situations, barges or tugs are capsized. In addition, the large sway motion of the towed barge gives a menace to the safety of ships navigating nearby. This paper is the results of the experimental investigation into the course stability of an 8,000 DWT barge using a Towing Tank and a Circulating Water Channel. Various skegs are designed and course stability tests for the barge with skegs are conducted in calm water and in irregular waves. It is observed that an effective skeg attached to the barge enables the sway motion to be zero while the sway amplitude of the bare hull is around 10 times its breadth.

  • PDF

Numerical Analysis of Flow Characteristics of a Twin-skeg Container Ship with Variation of Stern Hull Shape (쌍축 컨테이너선의 선미선형 변화에 따른 유동 특성에 대한 수치해석)

  • Kim, Hee-Taek;Van, Suak-Ho;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.551-563
    • /
    • 2007
  • Numerical analysis for flow characteristics of a twin skeg container ship was carried out according to skeg vertical angles($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) and skeg distances(16m, 20m, 24m) by using a commercial CFD code, FLUENT. Computed: pressure distributions, wake distributions and resistance coefficients have been compared with experimental and WAVIS results carried out by MOERI. Flow characteristics from numerical analysis such as nominal wake fractions, wake distribution and directions of the transverse vectors give good agreement with WAVIS results, even though there are quantitative discrepancy comparing with experimental measurements at the propeller plane. It is found that the better resistance performance can be obtained with the increase of the skeg vertical angle and the decrease of the skeg distance, which are mainly caused by viscous pressure resistance due to the skeg form and pressure recovery around the skeg. In addition, a vertical angle of the skeg gives more effect to the resistance coefficient comparing with the skeg distance. On the basis of results of the present study, it shows that numerical analysis using the commercial code, FLUENT, is useful and efficient tool for the evaluation of the complex stern hull form with twin-skegs.

A Study on the Effect of LCG Variation to the Resistance Performance for High Speed Planing Fishing Boat (고속활주형어선의 종방향중심이 저항에 미치는 영향에 관한 연구)

  • 이귀주;이조원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.308-312
    • /
    • 2001
  • This study was carried out to develop a basic form of planning hull type fishing boat. G/T 10ton class is selected as object hull form, and hull form is designed in Chosun University. A series of test results of LCG variations for S different LCG points are presented in this paper. The test was performed in Davidson Laboratory, and the scope of tests include resistance, trim and sinkage.

  • PDF

Correlation Study on Course Keeping Stability of Barges according to Variations in Dimensions and Hull Coefficient (바지선 제원 및 선형계수에 따른 침로 안정성 연관연구)

  • Chun, Jang-Ho;Kim, Moon-Chan;Chun, Ho-Hwan;Do, In-Rok;Koo, Ja-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Recently, a ship-shaped barge has been developed to improve the resistance performance, as well as course-keeping capability. However, the stern of the barge is still similar to a box shape, and the vortex generated at the side of the barge creates drag and yaw instability. In order to solve this problem, stern skegs are normally used. The present paper deals with the correlation between the size of the stern skegs and the barge dimensions and hull coefficient. A stern skeg was designed to prevent yaw instability and minimize any additional resistance. The resistance test and course keeping test were performed in the towing tank at Pusan National University. To determine the correlation parameters between the designed stern skeg size and barge dimensions, a parametric study was also performed. Based on the experimental data from five barges, the optimum skeg dimensions were successfully derived. It is expected that the validation of the present study will be carried out by further experiments and computational comparisons in the near future.

A Study on the Buckling Strength of Stern Skeg Shell Plate (선미 스케그 외판의 좌굴강도에 관한 연구)

  • Choi, Kyung-Shin;Seol, Sang-Seok;Kim, Jin-Woo;Kong, Seok-Hwan;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.