• Title/Summary/Keyword: 선량 확인

Search Result 1,101, Processing Time 0.027 seconds

A Study on Photon Dose Calculation in 6 MV Linear Accelerator Based on Monte Carlo Method (몬테카를로 방법에 의한 6 MV 선형가속기의 광자 흡수선량 분포 평가에 관한 연구)

  • Kang, Sang-Koo;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • In this study we modeled the varian 2100C/D linear accelerator head and multi-leaf collimator by simulation with the GEANT4 Monte Carlo toolkit. Then central axis percentage depth dose profiles and lateral dose profiles within homogeneous water phantom($50{\times}50{\times}50\;cm^3$) were evaluated with 6 MV photon beam. The simulations were performed in two stages. In the first stage, photon energy spectrum at the target were computed were computed. Then spectra data was directly irradiated in the water phantom using sampling techniques. The simulation data were compared with experimental data to evaluate the accuracy of the model. Results showed that two data were matched within 2% error boundary. The proposed method will be applied for simulation of dose calculation and dose distribution study.

Performance Analysis of Electronic Personal Dosimeter(EPD) for External Radiation Dosimetry (전자개인선량계(EPD)의 외부피폭방사선량 평가 성능분석)

  • Lee, Byoung-Il;Kim, Taejin;Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.261-266
    • /
    • 2015
  • As performance of electronic personal dosimeter (EPD) used for auxiliary personal dosimeter in nuclear power plants (NPPs) has been being continuously improved, we investigated application cases in Korea and other countries and also tested it in NPPs to assess the performance of EPD for external radiation dosimetry. Result of performance tests done in domestic NPPs was similar to those obtained by IAEA in cooperation with EURADOS (IAEA-TECDOC-1564). In addition, EPD/TLD dose ratio has shown similar tendency of EPD/Film-badge dose ratio from the research by the Japan Atomic Power Company (JAPC) and EPD provided more conservative value than TLD or Film-badge. Although some EPD's failures have been discussed, EPD has shown continuous improvement according to the report of Institute of Nuclear Power Operation (INPO) and data from domestic NPPs. In conclusion, It is considered that the general performance of EPD is adequate for external radiation dosimetry compared with that of TLD, providing appropriate performance checking procedure and alternative measures for functional failure.

Analysis of Radiolytic Products of Lipid for the Detection of Irradiated Dried Cuttle Fish (Sepia officinalis) (건 갑오징어의 방사선 조사여부를 판별하기 위한 지방분해산물 분석)

  • Kim, Jun-Hyoung;Kim, Kyoung-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1072-1078
    • /
    • 2003
  • Radiation-induced hydrocarbons and 2-alkylcycolbutanones are formed from the fatty acids of irradiated fat. These radiation-induced compunds were detected by fat extraction with a Soxtec apparatus from dried cuttle fish (Sepia officinalis), isolation of hydrocarbons and 2-alkylcyclobutanones with florisil column chromatography, and identification of GC/MS. Concentration of hydrocarbons produced by -λ-irradiation depended on the composition of fatty acid in dried cuttle fish. The major hydrocarbons in the irradiated dried cuttle fish samples were pentadecane and 1-tetradecene from palmitic acid, heptadecane and 1-hexadecene from stearic acid, and 8-heptadecen and 1,7-hexadecadiene from oleic acid. Of 2-alkylcyclobutanones, 2-dodecylcyclobutanone from palmitic acid was present at the highest level in irradiated dried cuttle fish. The radiation-induced hydrocarbons and 2-alkylcyclobutanones from the irradiated dried cuttle fish were detected at 0.5 kGy and over, but not detected in the non-irradiated fish.

Treatment planning of Lung Cancer with Density corrected Computed Tomography (밀도를 입력한 CT planning을 이용한 Lung Cancer의 치료계획)

  • 김성규;김명세;신세원;홍정숙
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 1993
  • Treatment planning of lung cancer with density corrected Computed tomography. Eighty-seven patients with lung cnacer who had radiation therapy in Yeungnam University Medical Center between, April 1 1990 and Aug. 30 1993 were retrospectively evaluated total tumor dose, dose distribution, field correction, and loading change, compared with contour or CT image planning and density corrected CT planning. In dose distribution, higher dose was calculated in compare with density corrected CT planning less than 5% difference were found in 45 patient(52%), 5-10% in 25 patients (29%), 10-15% in 15 patients (17%) and over 15% in 2 patients (2%). Correction of treatment field was performed in 18 patients (21%) and changing of dose loading was given in 15 patients (17%). In conclusion, we emphasize that density corrected CT planning is the very important factor which contribute to increase therapeutic gain by exact selection of target volume, target dose, normal tissue dose and dose of critical organ.

  • PDF

LiF TLD in TLD Holder for In Vivo Dosimetry (생체 내 선량측정을 위한, TLD홀더에 넣은 LiF TLD)

  • Kim Sookil;Loh John J.K.;Min Byungnim
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.293-299
    • /
    • 2001
  • Prupose : LiF TLD has a problem to be used in vivo dosimetry because of the toxic property of LiF. The aim of this study is to develop new dosimeter with LiF TLD to be used in vivo dosimetry. Materials and methods : We designed and manufactured the teflon box(here after TLD holder) to put TLD in. The external size of TLD holder is $4\times4\times1\;mm^3$ To estimate the effect of TLD holder on TLD response for radiation, the linearity of TLD response to nominal dose were measured for TLD in TLD holder. Measurement were peformed in the 10 MV x-ray beam with LiF TLD using a solid water phantom at SSD of 100 cm. Percent Depth Dose (PDD) and Tissue-Maximum Ratio (TMR) with varying phantom thickness on TLD were measured to find the effect of TLD holder on the dose coefficient used for dose calculation in radiation therapy. Results : The linearity of response of TLD in TLD holder to the nominal dose was improved than TLD only used as dosimeter And in various measurement conditions, it makes a marginnal difference between TLD in TLD holder and TLD only in their responses. Conclusion : It was proven that the TLD in TLD holder as a new dosimetry could be used in vivo dosimetry.

  • PDF

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.

The Frequency of Chromosomal Aberrations of Peripheral Lymphocytes according to Radiation Dose and Dose Rate (선량 및 선량률 변화에 따른 말초혈액 임파구의 염색체 이상의 빈도)

  • Jeong Tae Sik;Baek Heum Man;Shin Byung Chul;Moon Chang Woo;Kim Mi Hyang;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Purpose : It was studied that the relationship between radiation dose, dose rate and the frequency of chromosomal aberrations in peripheral lymphocytes. Methods and Materials : Peripheral lymphocytes were irradiated in vitro with 6 MeV X-ray at dose ranges from 50 cGy to 800 cGy. The variations of the frequency of chromosomal aberrations were observed according to different radiation dose rate from 20 cGy/min to 400 cGy/min at constant total dose of 400 cGy which it was considered as factor to correct biological radiation dose measurement. Results : The yields of lymphocytes with chromosomal aberrations (dicentric chromosome, ring chromosome, acentric fragment pairs) are 0% at 50 cGy, 9% at 100 cGy, 20% at 200 cGy, 27% at 300 cGy, 55% at 400 cGy, 88% at 600 cGy, and 100% at 800 cGy. The value of Ydr is 0.000 at 50 cGy, 0.093 at 100 cGy, 0.200 at 200 cGy, 0.354 at 300 cGy, 0.612 at 400 cGy, 2.040 at 600 cGy, and 2.846 at 800 cGy. The relationship between radiation (D) and the frequency of dicentrlc chromosomes and ring Chromosomes (Ydr) can be expressed as Ydr=0.188${\times}$10$^{-2}$ D/Gy+0.422${\times}$10$^{-4}$/Gy$^{2}$${\times}$D$^{2}$ The Value of Qdr is 0.000 at 50 cGy, 1.000 at 100 cGy, 1.000 at 200 cGy, 1.333 at 300 cGy, 1.118 at 400 cGy, 2.318 at 600 cGy, and 2.846 at 800 cGy. When 400 cGy is irradiated with different dose rate each of 20, 40, 60, 80, 100, 160, 240, 320, and 400 cGy/min, Ydr is each of 0.982, 0.837, 0.860, 0.732, 0.763, 0.966, 0.909, 1.006, and 0.806, and Qdr is each of 1.839, 1.555, 1.654, 1.333, 1.381, 1.750, 1.6000, 1.710, and 1.318. Conclusion : There are not the significant variations of Ydr and Qdr values according to different dose rate. And so radiation damage is influenced by total exposed radiation doses and is influenced least of all by different dose rate when it is acute single exposure.

  • PDF

Analysis of Photon Characteristics and Absorbed Dose with Cone Beam Computed Tomography (CBCT) using Monte Carlo Method (몬테칼로 기법을 이용한 CBCT의 광자선 특성 및 선량 분석)

  • Kim, Jong-Bo;Kim, Jung-Hoon;Park, Eun-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The cone beam computed tomography(CBCT) which can acquire 3-dimensions images is widely used for confirmation of patient position before radiation therapy. In this study, through the simulation using the Monte Carlo technique, we will analyze the exposure dose by cone beam computed tomography and present the standardized data. For the experiment, MCNPX(ver. 2.5.0) was used and the photon beam spectrum was analyzed after Cone beam was simulated. As a result of analyzing the photon beam spectrum, the average energy ranged from 25.7 to 37.6 keV at the tube voltage of 80 ~ 120 kVp and the characteristic X-ray energy was 9, 60, 68 and 70 keV. As a result of using the water phantom, the percentage depth dose was measured, and the maximum dose appeared on the surface and decreased with depth. The absorbed dose also decreased as the depth increased. The absorbed dose of the whole phantom was 9.7 ~ 18.7 mGy. This is a dose which accounts for 0.2% of about 10 Gy, which is generally used for radiation therapy per week, which is not expected to have a significant effect on the treatment effect. However, it should not be overlooked even if it is small compared with prescription dose.

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

Feasibility Study of Parallel- Plate Detector Using Dielectric film for 6 MV X-ray (6MV X-선 검출특성 조사를 위하여 유전체 필름을 이용하여 제작한 평행판 검출기의 유용성)

  • 조문준;김용은;이병용;김정기;임상욱;김현수;김기환
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The parallel plate detector with dielectric film for dosimetry was designed to measure detection characteristic of 6 MV X-ray with medical linear accelerator. PTFE film was inserted into FEP films that are made by two one-side metal coated materials for ion source. The thicknesses of PTFE dielectric film was 100 ${\mu}{\textrm}{m}$ and the thickness of FEP dielectric film was 100 ${\mu}{\textrm}{m}$, respectively. This detector was fixed by two acrylic plate for physical hardness ad geometrical consistency. The geometrical condition for measurement with parallel-plate for detector was below; SSD=100 cm and the 5 cm depth between detector and phantom surface The major parameter of detector characteristics such as zero drift current, leakage current, charge response by applied voltage, reproducibility, linearity, TMR measurement, dose rate effect were measured. The zero drift currents are 8.3 pA and leakage currents are 10 pA. The charge response of applied voltage is showing linearity in 414 voltage. The measurement deviation of reproducibility in this detector is within 1% for dose and the linearity of applied dose shows in this detector. The TMR curves in phantom between this parallel plate detector and reference detector are matched within 3% deviation from maximum dose depth to 7.5 cm depth. It is considered that this dosimetric system is satisfactory for the purpose of the constancy check of the 6 MV x-ray from medical linear accelerator.

  • PDF