• Title/Summary/Keyword: 선량환산

Search Result 87, Processing Time 0.029 seconds

Measurement of Radon and its Daughters Concentration in Air (공기중 라돈 및 라돈 자핵종의 농도 측정)

  • Park, Y.W.;Ha, C.W.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 1989
  • A Lucas cell was established and calibrated by using the double layer tube standard radon source. The calibration factors were 0.031$\pm$0.002 (pCi/l)/(cph/Cell) at room temperature, and 0.029$\pm$0.001 (pCi/l)/(cph/Cell) at $50^{\circ}C$. Radon and its daughters concentrations were measured in a room air for the demonstrating purpose. The concentrations of 222 Rn, $^{218}Po,\;224\;Pb,\;and\;^{214}Bi$ were 0.87, 0.53, 0.35 and 0.26 pCi/l. The total eqilibrium factor was around 0.40 and the WL is $3.33{\times}10^{-3}$, resulting in 30 mrem/yr at this place.

  • PDF

감마나이프 방사선치료에서 소프트웨어와 하드웨어 시간설정차이에 의한 처방선량에 주는 영향

  • 서원섭;임영진;신동오
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.60-60
    • /
    • 2003
  • 목적 : 감마나이프 치료계획용 소프트웨어인 감마플렌에서 처방선량을 계산하는 단위와 실제 시간을 설정하는 하드웨어인 조정판의 시간설정 단위의 차이에 의한 실제 처방선량에 끼치는 영향을 계산하였다. 대상 및 방법 : 감마나이프는 주어진 4 개의 헬멧을 가지고 최소 한번 또는 최대 20 번 이상의 방사선 조합으로 한번에 많은 방사선을 목표물에 조사한다. 감마나이프 방사선 수술을 위한 치료계획용 소프트웨어인 감마플렌 5.32에서는 처방선량에 대한 치료시간을 최대 지점 또는 지정하는 지점에 규격화하여 소숫점 두 자리 즉 0.6 초까지 계산한다. 그러나 실제 치료를 위한 조정판의 시간설정은 모델 B 에서는 소숫점 한자리까지 가능하게 되어있다. 그러므로 모델 B를 사용하는 기관의 치료계획 컴퓨터인 감마플렌에서는 소숫점 한자리로 만들기 위해 반올림과 내림을 하게 되며 이것을 프린트하여 사용하게 된다. 실제 임상에서 멀티삿에 대한 반올림과 내림에 대한 효과를 선량으로 환산하여 처방선량에 끼치는 영향을 연구하였다. 치료 계획에 서 처방선량을 입력한 후 계산된 각 조사에 대한 소숫점 두자리 시간을 화면에 표시한 후 스냅tit으로 스크린 캡쳐하여 프린트하였으며, 소숫점 한자리로 된 최종 치료계획을 프린트하여 서로 비교 계산하였다. 결과 : 20 여명의 환자에 대한 치료 결과에 대한 분석은 조사의 수나 처방선량에 관계하지 않고 우연히 올림이 많으냐 내림이 많으냐에 의존하였다. 최대지점에 대하여 분석한 결과는 -0.48부터 +0.47로 -2%부터 +1.9%의 정도로 영향을 끼쳤다. 결론 : 반올림과 내림의 결과는 처방선량을 줄일 수도 있고 늘일 수도 있었다. 그러나 이 연구는 최대선량 지점에 대해 비교를 하였으나 실제로는 각 조사의 위치가 서로 다르므로 영향은 이보다 훨씬 적을 것으로 생각되어 소숫점 한자리로 치료하여도 무방할 것으로 보인다.mm, AP 방향에서는 2.1$\pm$0.82 mm이었다. 그리고 복부의 later의 방향에서는 7.0$\pm$2.1 mm, AP 방향에서는 6.5$\pm$2.2 mm 이었다. 또한 표적 위치측정을 위해서 환자의 피부에 임의의 가상표적을 부착하고 CT 촬영한 영상결과, 프레임으로 가상표 적에 대한 위치를 정확히 파악할 수 있었다. 결론 : 제작된 프레임을 적용하여 방사선투과율 측정실험, 환자 외부자세에 대한 오차 측정실험, 가상표적 위치측정 실험 등을 수행하였다. 환자 외부자세에 대한 오차 측정실험 경우, 더 많은 Volunteer를 적용하여 보다 정확한 오차 측정실험이 수행되어야 할 것이며 정확한 표적 위치 측정실험을 위해서 내부 마커를 삽입한 환자를 적용한 임상실험이 수행되어야 할 것이다. 또한 위치결정에서 획득한 좌표값의 정확성을 알아보기 위해서 팬톰을 이용한 방사선조사 실험이 추후에 실행되어져야 할 것이다. 그리고 제작된 프레임에 Rotating X선 시스템과 내부 장기의 움직임을 계량화하고 PTV에서의 최적 여유폭을 설정함으로써 정위 방사선수술 및 3 차원 업체 방사선치료에 대한 병소 위치측정과 환자의 자세에 대한 setup 오차측정 결정에 도움이 될 수 있을 것이라고 사료된다. 상대적으로 우수한 것으로 나타났으며, 혼합충전재는 암모니아의 경우 코코넛과 펄라이트의 비율이 7:3인 혼합 재료 3번과 소나무수피와 펄라이트의 비율이 7:3인 혼합 재료 6번에서 다른 혼합 재료에 비하여 우수한 것으로 나타났다. 4. 코코넛과 소나무수피의 경우 암모니아 가스에 대한 흡착 능력은 거의 비슷한 것으로 사료되며, 코코넛의 경우 전량을 수입에 의존하고 있다는 점에서 국내 조달이 용이하며, 구입 비용도 적게 소요되는 소나무수피를 사용하는 것이 경제적이라고 사료된다. 5. 마지막으로

  • PDF

Development of the Reference Korean Female Voxel Phantom (한국인 기준여성 체적소형 모의체 개발)

  • Ham, Bo-Kyoung;Cho, Kun-Woo;Yeom, Yoen-Soo;Jeong, Jong-Hwi;Kim, Chan-Hyeong;Han, Min-Cheol
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was $1.976{\times}1.976{\times}2.0619\;mm^3$ and the voxel array size is $261{\times}109{\times}825$ in the x, y and z directions. Then, the voxel resolution was changed to $2.0351{\times}2.0351{\times}2.0747\;mm^3$ for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

Radiation Dose during Fluoroscopy at the Organ from Extracorporeal Shock Wave Lithotripsy (체외충격파쇄석술에서 투시 시 주요 장기별 방사선 피폭선량)

  • Moon, Sung-Ho;Jung, Hong-Ryang;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.343-350
    • /
    • 2010
  • We measured the radiation exposure for 55 persons (male: 36, female: 19) who was diagnosed with kidney and ureter stones and received ESWL. The absorbed dose was measured at the organ which is expected to absorb relatively much radiation (kidney, bladder, liver). The radiation dose measurement voltage 80kVp, current of 5mA as a fixed model of the human body by using the Rando phantom with Radiophotoluminescent Glass Dosimeter. Absorbed dose was measured for two times (5 minute and 10 minute, each) and converted to effective dose. Mean number of treatment was 1.8 times (1~4) per patient was the mean time of radiation exposure533 seconds (248-2516). For the treatment of right renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.458mSv, 0.152mSv, 1.404 mSv and 0.019mSv, respectively. For the treatment of left renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.496mSv, 0.252mSv, 0.178 mSv, and 0.017mSv, respectively. For the treatment of distal ureter stone, the effective dose of right kidney, left kidney and bladder was 0.009mSv, 0.01mSv and 3.742mSv, respectively.

A Study on the Clarance Level for the Metal Waste from the KRR-1 & 2 Decommissioning (연구로 1,2호기 해체 금속폐기물의 규제해제농도기준(안) 도출을 위한 연구)

  • 홍상범;이봉재;정운수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The exposure dose form recycling on a large amount of the steel scrap from the KRR-1&2 decommissioning activities was evaluated, and also the clearance level was derived. The maximum individual dose and collective dose were evaluated by modifying internal dose conversion factor which was based on the concept of effective dose in ICRP 60, applied to the RESRAD-RECYCLE ver 3.06 computing code, IAEA Safety Series III-P-1.1 and NUREG-1640 as the assessment tool. The result of assessment for individual dose and collective dose is 23.9 ${\mu}Sv$ per year and 0.11 man$\cdot$Sv per year respectively. The clearance levels were ultimately determined by extracting the most conservative value form the results of the generic assessment and specific assessment methodologies. The result of clearance level for radionuclides($Co^60$, $Cs^137$) is less than $1.67{\times}10^{-1}$ Bq/g to comply with the clearance criterion(maximum individual dose : 10 $\muSv$ per year, collective dose : 1 man$\cdot$Sv per year) provided for Korea Atomic Energy Act and relevant regulations.

  • PDF

Measurement of Dose Distribution in Small Fields of NEC LINAC 6 MVX Using Films and Tissue Equivalent Phantoms (필름 및 tissue equivalent 팬톰을 이용한 NEC LINAC 6 MVX 소조사면에 대한 선량분포 측정)

  • Suh, Tae-Suk;Park, Dong-Rak;Choe, Bo-Young;Yoon, Sei-Chul;Jang, Hong-Seok;Park, Il-Bong;Kim, Moon-Chan;Bahk, Yong-Whee;Shin, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.9-17
    • /
    • 1993
  • The purpose of this paper is to develop a simple system to measure dose distribution in small fields of NEC LINAC 6 MVX using film and solid water instead of ion chamber and water phantom. Specific quantities measured include percent depth dose (PDD), off-axis ratio (OAR). We produced square fields of 1 to 3cm in perimeter in 1cm steps measured at SAD of 80cm. The PDD and OAR measured by film was compared with measurement made with ion chamber. We calculated the TMR from the basic PDD data using the conversion formula. The trends of our measured beam data and philips LINAC are similar each other. The measurement for the small field using film and solid water was simple. Hand-made film phantom was especially useful to measure OARs for the stereotactic radiosurgery.

  • PDF

A Measurement of the Exposure Rates by Terrestrial y-rays in Taegu Area (대구지역(大邱地域) 지각(地殼) ${\gamma}$-선(線)의 조사선량율(照射線量率) 측정(測定))

  • Chang, Si-Ho;Jeong, Chun-Gyun;Kang, Hee-Dong;Lee, Mo-Sung;Choi, Mun-Kyu;Kim, Wi-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.2
    • /
    • pp.121-132
    • /
    • 1994
  • This study concerns about the measurement and the investigation of environmental radiation characteristics which the components and the distribution of exposure rates by terrestrial y-rays in Taegu area. $4^{'}{\phi}{\times}4^{'}$ NaI(T1) scintillation detector with a multichannel analyzer was used in the measurement of y-rays as a part of in-situ spectrometry at twenty eight different locations in this area. The conversion into the exposure rate from the measured ${\gamma}-ray$ spectrum has been carried out leading to a net exposure rate and component ones by $^{40}K,\;^{238}U$ series and $^{232}Th$ series products which are known by the major parts in the terrestrial ${\gamma}-rays$ generally. As a result, the average exposure rate by the terrestrial ${\gamma}-rays$ in Taegu area is $9.4{\mu}R/h$ and the distribution of individual exposure rates shows more or less differences between these locations even after the consideration of diurnal and yearly variations which are always involved in these measurements. The component parts of exposure rates are distributed $^{40}K\;2.9{\sim}4.6{\mu}R/h,\;^{238}U$ series $1.2{\sim}3,\;1{\mu}R/h,\;^{232}Th$ series $2.5{\sim}5.0{\mu}R/h$ over the measured locations.

  • PDF

Feasibility Study of the Radiophotoluminescent Glass Dosimeter for High-energy Electron Beams (유리선량계를 이용한 고에너지 전자선 측정 이용 가능성에 관한 연구)

  • Son, Ki-Hong;Jung, Hai-Jo;Shin, Sang-Hun;Lee, Hyun-Ho;Lee, Sung-Hyun;Kim, Mi-Sook;Ji, Young-Hoon;Kim, Kum-Bae
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • Our goal is to assess the suitability of a glass dosimeter on detection of high-energy electron beams for clinical use, especially for radiation therapy. We examined the dosimetric characteristics of glass dosimeters including dose linearity, reproducibility, angular dependence, dose rate dependence, and energy dependence of 5 different electron energy qualities. The GD was irradiated with high-energy electron beams from the medical linear accelerator andgamma rays from a cobalt-60 teletherapy unit. All irradiations were performed in a water phantom. The result of the dose linearity for high-energy electron beams showed well fitted regression line with the coefficient of determination; $R^2$ of 0.999 between 6 and 20 MeV. The reproducibility of GDs exposed to the nominal electron energies 6, 9, 12, 16, and 20 MeV was ${\pm}1.2%$. In terms of the angular dependence to electron beams,GD response differences to the electron beam were within 1.5% for angles ranging from $0^{\circ}$ to $90^{\circ}$ and GD's maximum response differencewas 14% lower at 180o. In the dose rate dependence, measured dose values were normalized to the value obtained from 500 MU/min. The uncertainties of dose rate were measured within ${\pm}1.5%$ except for the value from 100 MU/min. In the evaluation of the energy dependence of the GD at nominal electron energies between 6 and 20 MeV, we obtained lower responses between 1.1% and 4.5% based on cobalt-60 beam. Our results show that GDs have a considerable potentiality for measuring doses delivered by high-energy electron beams.

Dose Alterations at the Distal Surface by Tissue Inhomogeneity in High Energy Photon Beam (조직 불균질성에 의한 고에너지 광자선의 선량변화)

  • Kim, Young-Ai;Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.277-283
    • /
    • 1995
  • Purpose : This study was performed to measure dose alteration at the air-tissue interface resulting from rebuild-up to the loss of charged particle equilibrium in the tissues around the air-tissue interfaces. Materials and Methods : The 6 and 10-MV photon beam in dual energy linear accelerator were used to measure the surface dose at the air-tissue interface The polystyrene phantom sized $25{\times}25{\times}5\;cm^3$ and a water phantom sized $29{\times}29{\times}48\;cm^3$ which incorporates a parallel-plate ionization chamber in the distal side of air gap were used in this study. The treatment field sizes were $5{\times}5\;cm^2,\;10{\times}10\;cm^2\;and\;20{\times}20\;cm^2$. Air cavity thickness was variable from 10 mm to 50 mm. The observed-expected ratio (OER) was defined as the ratio of dose measured at the distal junction that is air-tissue interface to the dose measured at the same point in a homogeneous phantom. Results : In this experiment, the result of OER was close or slightly over than 1.0 for the large field size but much less (about 0.565) than 1.0 for the small field size in both photon energy. The factors to affect the dose distribution at the air-tissue interface were the field size, the thickness of air cavity. and the photon energy. Conclusion : Thus, the radiation oncologist should take into account dose reduction at the air-tissue interface when planning the head and neck cancer especially pharynx and laryngeal lesions, because the dose can be less nearly $29{\%}$ than predicted value.

  • PDF

The Effect of the CT Number for Each CT on Dose Calculation (CT 기종에 따른 CT 수의 변화가 선량계산에 미치는 영향)

  • Cho Kwang Hwan;Lee Suk;Cho Sam Ju;Lim Sangwook;Huh Hyun Do;Min Chul Kee;Cho Byung-Chul;Kim Yong Ho;Choi Doo Ho;Kim Eun Seog;Kwon Soo Il
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.161-165
    • /
    • 2005
  • The CT number corresponds to electron density and its influence on dose calculation was studied. Five kinds of CT scanners were used to obtain Images of electron density calibration phantom (Gammex RMI 467), Then the differences between CT numbers for each scanners were ${\pm}2\%$ In homogeneous medium and $9.5\%$ in high density medium. In order to Investigate the influence of CT number to dose calculation, patients' thoracic CT images were analyzed. The maximum dose difference was $0.48\%$ for each organ. It acquired the phantom Images inserted high density material in the water phantom. Comparing the doses calculated with CT Images from each CT scanner, the maximum dose difference was $2.1\%$ in 20 cm in depth. The exact density to CT number conversion according to CT scanner is required to minimize the uncertainty of dose depends on CT number Especially the each hospital with various CT scanners has to discriminate CT numbers for each CT scanner. Moreover a periodic quality assurance is required for reproducibility of CT number.

  • PDF