• Title/Summary/Keyword: 선량분포 측정

Search Result 398, Processing Time 0.027 seconds

Development of Simple and Rapid Radioactivity Analysis for Thorium Series in the Products Containing Naturally Occurring Radioactive Materials (NORM) (천연방사성물질(NORM)을 함유한 가공제품 내 토륨계열 방사능 평가를 위한 간단/신속 분석법 개발)

  • Yoo, Jaeryong;Park, Seyoung;Yoon, Seokwon;Ha, Wi-Ho;Lee, Jaekook;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • Background: It is necessary to analyze radioactivity of naturally occurring radioactive materials (NORM) in products to ensure radiological safety required by Natural Radiation Safety Management Act. The pretreatments for the existing analysis methods require high technology and time. Such destructive pretreatments including grinding and dissolution of samples make impossible to reuse products. We developed a rapid and simple procedure of radioactivity analysis for thorium series in the products containing NORM. Materials and Methods: The developed method requires non-destructive or minimized pretreatment. Radioactivity of the product without pretreatment is initially measured using gamma spectroscopy and then the measured radioactivity is adjusted by considering material composition, mass density, and geometrical shape of the product. The radioactivity adjustment can be made using scaling factors, which is derived by radiation transport Monte Carlo simulation. Necklace, bracelet, male health care product, and tile for health mat were selected as representative products for this study. The products are commonly used by the public and directly contacted with human body and thus resulting in high radiation exposure to the user. Results and Discussion: The scaling factors were derived using MCNPX code and the values ranged from 0.31 to 0.47. If radioactivity of the products is measured without pretreatment, the thorium series may be overestimated by up to 2.8 times. If scaling factors are applied, the difference in radioactivity estimates are reduced to 3-24%. Conclusion : The developed procedure in this study can be used for other products with various materials and shapes and thus ensuring radiological safety.

An Experimental Study on the Effect of Combined X-ray and Microwave Hyperthermia on the Rectum and Urinary Bladder of Rats (흰쥐의 직장과 방광에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.115-128
    • /
    • 1986
  • Hyperthermia can enhance the radiation effect as a synergistic reaction in combined X-ray irradiation and hyperthermia; hyperthermia sensitize radioresistant S-phase cells and inhibit cellular recovery from sublethal damage. We fabricated 100 watts, 2450 MHz microwave applicator for hyperthermia and planned the method and condition of heating and measured the temperature by using Agar phantom as a preliminary test. For biological examination, 102 rats were divided into 4 groups as hyperthermia, X-ray irradiation (6Gy-15Gy), combined X-ray and hyperthermia, and normal control groups. Microscopic examination of the rectum and bladder was done and the results were as followings: 1. The microwave generator with 100 watts, 2450MHz magnetron could be heating up to $40^{\circ}{\sim}50^{\circ}C$ for one hour in living tissue. 2. The thermal distribution in tissue equivalent phantom with microwave can be maintained at $40^{\circ}{\sim}44^{\circ}C$ in area of 3cm in depth and 2-10cm in diameter. 3. In Hyperthermia alone group, there was submucosal edema of the rectum but no histologic change in the urinary bladder was seen. 4. The minimal necrosis of the mucosa was appeared in the rectum and bladder after 15 days of 6 Gy and 8 Gy irradiation respectively. The minimal necrosis of the muscle layer of rectum and bladder was appeared after 15 days of 8Gy and 60days of 10Gy irradiation respectively. 5. In combined group of radiation and hyperthermia, thermal enhancement ratio (calculated at necrosis of mucosa and muscle layer) of rectum and bladder was 1.0, and it suggest that there is no change of tolerance dose of normal rectum and bladder.

  • PDF

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Reproducibility of Applicator Position with High dose rate brachytherapy in uterine cervical cancer (자궁경부암 환자의 근접치료시 재현성 평가)

  • Kim Jong-Hwa;Son Jung-Hae;Jung Chil;Kim Mi-Hwa
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • I. Purpose Brachytherapy is the main component in treatment of patients with uterine cervical cancer. The reproducibility of applicator position in the same patient at repeated treatments was very important for accurate dose delivery. It was aimed to evaluate the change of applicator location between each high dose rate(HDR) brachytherapy insertion in the patients with uterine cervical cancer. II. Materials and Methods From January 1999 to October 2001, total 52 patients were treated with external beam radiotherapy and HDR brachytherapy (Microselectron, Nucletron). During six to seven times of brachytherapy, all patients had three treatment plans. From the orthogonal radiographs, we measured the following variables; height from upper border of pubic bone to os (HPO), distance from sacral promontory to tip of tandem (DST), distance from coccyx to os (DCO), distance from tip of right ovoid to os (DRO), distance from tip of left ovoid to os (DLO), and distance from center of the first tandem source to ovoid (DTO). To evaluate the reproducibility of applicator position, it was calculated the standard deviation of differences between three insertions for the 7 parameters in each patient. III. Results The ranges of standard deviations of interfractional differences for the variables were as follows. 1)HPO : $0{\sim}0.79cm$ 2)DST : $0{\sim}0.9cm$ 3)DCO : $0.06{\sim}0.76cm$ 4)DRO : $0{\sim}0.53cm$ 5)DLO : $0{\sim}0.45cm$ 6) DTO $0{\sim}0.36cm$ IV. Conclusions There was some change in applicator position on repeated implants in our study. But variation of the interfractional differences was minimal; in all parameters, there were less than 1 cm. We are continued to try for reducing the geometric variation between each procedure.

  • PDF

Acquisition of High Resolution Images and its Application using Synchrotron Radiation Imaging System (방사광 X-선을 이용한 고해상도 영상획득과 응용)

  • 홍순일;김희중;정해조;홍진오;정하규;김동욱;제정호;김보라;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Synchrotron radiation (SR) has several advantages over convetional x-rays, including its phase, collimation, and high flux. A synchrotron radiation beamline 5C1 at Pohang Light Source (PLS) was recently built for imaging applications. We have shown that a SR imaging system is useful in imaging microscopic structures. SR with broad-band energy spectrum were adjusted to an object by Si wafers and their energy were approximately ranging from 6 keV to 30 keV. SR were passed through an object and finally transformed into visible lights by CdWO$_4$ scintillator screen. The visible lights which were reflected at an angle of 90 degrees by gold plated mirror were detected by a CCD camera and the image data were acquired using image acquisition system. A high-resolution phantom, capacitor, adult tooth, child tooth, cancerous breast tissue, and mouse lumbar vertebra were imaged with SR imaging system. The Objects were rotated within the field of view of the CCD detector, and their projection image data were obtained at 250 steps over 180 degrees rotation. Image reconstructions were carried out in a PC by using IDLTM(Research systems, Inc., US) program. The spatial resolution of the images acquired by the SR imaging system was measured with a high-resolution chart manufactured for several micrometer resolution. The specimens were also imaged with conventional x-ray radiography system to compare the image quality of radiography obtained with the SR imaging system. The results showed more structural details and high contrast images with SR imaging system than conventional x-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications, and clinical radiography.

  • PDF

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

Radiation-Induced Chromosome Aberration in Human Peripheral Blood Lymphocytes In Vitro : RBE Study with Neutrons and $^{60}Co\;{\gamma}-rays$. (KCCH cyclotron neutron 및 $^{60}Co\;{\gamma}-ray$에 의한 인체 말초혈액 임파구의 염색체 이상측정)

  • Kim, Sung-Ho;Kim, Tae-Hwan;Chung, In-Yong;Cho, Chul-Koo;Koh, Kyoung-Hwan;Yoo, Seong-Yul
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 1992
  • The frequencies of KCCH cyclotron neutron (30 cGy/min) or $^{60}Co\;{\gamma}-rays$ (210 cGy/min)-induced asymmetrical interchanges (dicentrics and centric rings) and acentric fragments (deletion) at several doses were measured in the normal human peripheral blood lymphocytes Chromosome aberrations were scored at the first nitosis after stimulation with phytohemagglutinin. The neutron and y-ray data were analysed on linear, power-law, quadratic and linear-quadratic model . When the dicentrics and centric rings of ${\gamma}-rays$ datas were pooled and fitted to these model, good fits were obtained to power-law $[Y=(5.81{\pm}1.96){\times}10^6D^{1.93+0.06},\; P=0.931]$, quadratic $[Y=(3.91{\pm}0.09){\times}10^{-6}D^2,\;P=0.972]$ an linear-Quadrati model $[Y=(6.55{\pm}6.83){\times}10^{-5}D+(3.72{\pm}0.22){\times}10^{-6}D^2\; P=0.922]$, except for linear model (P=0.067) As in the case of neutron data, the best fit was obtained to the linear model $(Y=(6.12{\pm}0.17){\times}10^{-3}\;D-0.22,\;P=0.987]$ and good fits were obtained to power-law$[Y=(5.36{\pm}3.02) {\times}10^{-4}D^{1.42+0.11},\; P=0.601]$ and linear-quadratic model$[Y=(2.43{\pm}0.70){\times}10^{-3}D+(1.21{\pm}0.39){\times}10^{-7}D^2$, \;P=0.415], except for quadratic model (P<0.005). The relative biological effectiveness (RBE) of neutron compared with y-ray was estimated by best fitting model. In the asymmetrical interchanges range between 0.1 and 1.5 per cell, the RBE was found to be $2.714{\pm}0.408$.

  • PDF

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.