• Title/Summary/Keyword: 선량보정인자

Search Result 48, Processing Time 0.032 seconds

The Study on the Use of a Cylindrical Ionization Chamber for the Calibration of a 6 MeV Electron Beam (6 MeV 전자 빔의 교정에 원통형 이온함의 사용에 관한 연구)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Choi, Jin-Ho;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • The standard dosimetry systems based on an absorbed dose to water recommend to use a planeparallel chamber for the calibration of such a low-megavoltage electron beam as a nominal energy of 6 MeV. For this energy ranges of an electron beam a cylindrical chamber should not be used for the routinely regular beam calibration, but the feasibility of the temporary use of a cylindrical chamber was studied to give temporary solutions for special situations users meet. The PTW30013 chambers and the electron beam quality of $R_{50}=2.25\;g/cm^2$ were selected for this study. 10 PTW30013 chambers, a cylindrical type of chamber, were calibrated in KFDA, the secondary standards dosimetry laboratories, and given the absorbed dose-to-water calibration factors, respectively. A "temporary" $k_{Q,Q_0}$ for each chamber were calculated using the absorbed dose determined by a cross-calibrated planeparallel chamber, with the result of an average 0.9352 for 10 chambers. This value for PTW30013 chamber was used to determine an absorbed dose to water at the reference depth. The absorbed doses determined by PTW30013 chambers were in an agreement within 2% with that by ROOS chamber. In a certain situation where a cylindrical chamber be used instead of a planeparellel chamber, the value of 0.9352 might be useful to determine an absorbed dose to water in the same beam quality of electron beam as this study.

  • PDF

A Study of a Non-commercial 3D Planning System, Plunc for Clinical Applicability (비 상업용 3차원 치료계획시스템인 Plunc의 임상적용 가능성에 대한 연구)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 1998
  • Purpose : The objective of this study is to introduce our installation of a non-commercial 3D Planning system, Plunc and confirm it's clinical applicability in various treatment situations. Materials and Methods : We obtained source codes of Plunc, offered by University of North Carolina and installed them on a Pentium Pro 200MHz (128MB RAM, Millenium VGA) with Linux operating system. To examine accuracy of dose distributions calculated by Plunc, we input beam data of 6MV Photon of our linear accelerator(Siemens MXE 6740) including tissue-maximum ratio, scatter-maximum ratio, attenuation coefficients and shapes of wedge filters. After then, we compared values of dose distributions(Percent depth dose; PDD, dose profiles with and without wedge filters, oblique incident beam, and dose distributions under air-gap) calculated by Plunc with measured values. Results : Plunc operated in almost real time except spending about 10 seconds in full volume dose distribution and dose-volume histogram(DVH) on the PC described above. As compared with measurements for irradiations of 90-cm 550 and 10-cm depth isocenter, the PDD curves calculated by Plunc did not exceed $1\%$ of inaccuracies except buildup region. For dose profiles with and without wedge filter, the calculated ones are accurate within $2\%$ except low-dose region outside irradiations where Plunc showed $5\%$ of dose reduction. For the oblique incident beam, it showed a good agreement except low dose region below $30\%$ of isocenter dose. In the case of dose distribution under air-gap, there was $5\%$ errors of the central-axis dose. Conclusion : By comparing photon dose calculations using the Plunc with measurements, we confirmed that Plunc showed acceptable accuracies about $2-5\%$ in typical treatment situations which was comparable to commercial planning systems using correction-based a1gorithms. Plunc does not have a function for electron beam planning up to the present. However, it is possible to implement electron dose calculation modules or more accurate photon dose calculation into the Plunc system. Plunc is shown to be useful to clear many limitations of 2D planning systems in clinics where a commercial 3D planning system is not available.

  • PDF

Evaluation of RPL Glass Dosimeter Characteristics and Uncertainty Evaluation of Reading Correction Factors (유리선량계 특성평가 및 판독 보정인자에 대한 불확도 평가)

  • Seong-Yun Mok;Yeong-Rok Kang;Hyo-Jin Kim;Yong-Uk Kye;Hyun An
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2023
  • In this study, basic characteristics such as reproducibility, linearity, and directionality of RPL glass dosimeters were evaluated to improve the reliability of dose evaluation through RPL glass dosimeters, and uncertainty elements such as sensitivity by glass element and magazine slot sensitivity were evaluated. Using a mathematical model to calibrate the measured values of the RPL glass dosimeter, the measurement uncertainty was calculated assuming an example. As a result of the characteristic evaluation, the RPL glass dosimeter showed excellent performance with a standard deviation of ±1% (1 SD) for the reproducibility of the reading process, a coefficient of determination for linearity of 0.99997. And the read-out of the RPL glass dosimeter are affected by the circular rotation direction of the glass dosimeter during irradiation, fading according to the period after irradiation, the number of laser pulses of the reader, and response degradation due to repeated reading, it is judged that measurement uncertainty can be reduced by irradiation and reading in consideration of these factors. In addition, it was confirmed that the dose should be determined by calculating the correction factors for the sensitivity of each element and, the sensitivity of each reading magazine slot. It is believed that the reliability of dosimetry using glass dosimeters can be improved by using a mathematical model for correction of glass dosimeter readings and calculating measurement uncertainty.

Simplistic QA for an Enhanced Dynamic Wedge using the Reversed Wedge Pair Method (역방향 조사방식을 통한 동적쐐기의 품질관리)

  • Lee Jeong Woo;Hong Semie;Suh Tae Suk
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.161-166
    • /
    • 2004
  • A simplistic quality assurance (QA) method was designed for a Linac built-in enhanced dynamic wedge (EDW), which can be utilized to make wedged beam distributions. For the purpose of implementing the EDW symmetry QA, a film dosimetry system, low speedy dosimetry film, film densitometer and 3D RTP system were used, and the films irradiated by means of a 60$^{\circ}$ Reversed wedge pair (REWP) method. The profiles were then analyzed in terms of their symmetries, including partial treatment, which is the case of stopping it abruptly during EDW irradiation, and the measured and calculated values compared using the Cad Plan Golden Segmented Treatment Table (Golden STT). The result of this experiment was in good agreement, within 1 %, of the 'reversed wedge pair counterbalance effect'. For the QA of the effective wedge factor (EWF), the authors measured EWFs in relation to the 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, 25$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$ EDW, which were compared with the calculated values using the correction factor derived from the Golden STT and the log files produced automatically during the process of EDW irradiation. By means of this method it was capable of check up the safety of effective wedge factor without any other dosimetry system. The EDW QA was able to be completed within 1 hour from irradiation to analysis as a consequence of the simplified QA procedure, with maximized effectiveness. Unlike the metal wedge system, the EDW system was heavily dependent on the dose rates and jaw movements; therefore, its features could potentially cause inaccuracy. The frequent simplistic QA for the EDW is essential, and could secure against the flaw of dynamic treatment that uses the EDW.

  • PDF

The Development of Earthenware Kilns in Bongsan-ri Archaeological Site, Osong: Implications for Pre- and Post-1950 AD Absolute Age Determination (AD 1950년 전후 고고유적의 절대연대측정에 대한 고찰: 오송 봉산리 옹기가마 유적을 중심으로)

  • Kim, Myung Jin;Son, Myoung Soo;Kim, Tae Hong;Sung, Ki Seok
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.481-492
    • /
    • 2018
  • We conducted TL/OSL dating for the earthenware kilns in the Bongsan-ri archaeological site, Osong, which was occupied from the late nineteenth to the late twentieth century. With the SAR-TL/OSL method, paleodose was determined from the equivalent dose during the burial period($ED_{burial}$), the background dose($ED_{BG}$), the fading correction factor(f), and the overestimation correction factor(C). The annual dose rates and their provenance were evaluated from the measurement of natural radionuclides $^{238}U$, $^{232}Th$, and $^{40}K$. Because the comprehensive absolute age was provided by combining the resulting TL/OSL and radiocarbon data, we concluded that, for the absolute chronology of a modern archaeological site, TL/OSL dating and radiocarbon dating must be carried out together and summed. The construction and occupation of earthenware kilns in the Bongsan-ri site had changed from stage I (No.5, 6 kilns), to stage II (No.1, 2, 3 kilns), to stage III (No.4) in chronological order. When Bayesian statistics were applied, we found that the absolute ages of occupation for stages I, II, and III correspond to AD $1910{\pm}23$, AD $1970{\pm}10$, and AD $1987{\pm}4$. These results were in good agreement with the archaeological context or chronology.

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

The Frequency of Chromosomal Aberrations of Peripheral Lymphocytes according to Radiation Dose and Dose Rate (선량 및 선량률 변화에 따른 말초혈액 임파구의 염색체 이상의 빈도)

  • Jeong Tae Sik;Baek Heum Man;Shin Byung Chul;Moon Chang Woo;Kim Mi Hyang;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Purpose : It was studied that the relationship between radiation dose, dose rate and the frequency of chromosomal aberrations in peripheral lymphocytes. Methods and Materials : Peripheral lymphocytes were irradiated in vitro with 6 MeV X-ray at dose ranges from 50 cGy to 800 cGy. The variations of the frequency of chromosomal aberrations were observed according to different radiation dose rate from 20 cGy/min to 400 cGy/min at constant total dose of 400 cGy which it was considered as factor to correct biological radiation dose measurement. Results : The yields of lymphocytes with chromosomal aberrations (dicentric chromosome, ring chromosome, acentric fragment pairs) are 0% at 50 cGy, 9% at 100 cGy, 20% at 200 cGy, 27% at 300 cGy, 55% at 400 cGy, 88% at 600 cGy, and 100% at 800 cGy. The value of Ydr is 0.000 at 50 cGy, 0.093 at 100 cGy, 0.200 at 200 cGy, 0.354 at 300 cGy, 0.612 at 400 cGy, 2.040 at 600 cGy, and 2.846 at 800 cGy. The relationship between radiation (D) and the frequency of dicentrlc chromosomes and ring Chromosomes (Ydr) can be expressed as Ydr=0.188${\times}$10$^{-2}$ D/Gy+0.422${\times}$10$^{-4}$/Gy$^{2}$${\times}$D$^{2}$ The Value of Qdr is 0.000 at 50 cGy, 1.000 at 100 cGy, 1.000 at 200 cGy, 1.333 at 300 cGy, 1.118 at 400 cGy, 2.318 at 600 cGy, and 2.846 at 800 cGy. When 400 cGy is irradiated with different dose rate each of 20, 40, 60, 80, 100, 160, 240, 320, and 400 cGy/min, Ydr is each of 0.982, 0.837, 0.860, 0.732, 0.763, 0.966, 0.909, 1.006, and 0.806, and Qdr is each of 1.839, 1.555, 1.654, 1.333, 1.381, 1.750, 1.6000, 1.710, and 1.318. Conclusion : There are not the significant variations of Ydr and Qdr values according to different dose rate. And so radiation damage is influenced by total exposed radiation doses and is influenced least of all by different dose rate when it is acute single exposure.

  • PDF

Measurement of the Skin Dose of Patient Using the Optically Stimulated Luminescent Dosimeter at Diagnostic Radiography (진단방사선촬영에서 광자극발광선량계를 이용한 환자 피부선량의 측정)

  • Kim, Jong-Eon;Im, In-Chul;Min, Byung-In
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.437-442
    • /
    • 2011
  • The purpose of this study is an measurement of the skin dose of a patient by using the OSLD(optically stimulated luminescent dosimeter) under several irradiation conditions of the X-ray beam for diagnostic radiography. The measurements of skin dose were performed for head, chest, and pelvis. And test of reproducibility was carried out at the chest. As a result, we obtained the skin dose at forehead of head to be 1.30 mSv. The skin doses at xiphoid process, breast and apex of the lung of the chest were acquired 0.92, 0.52 and 0.70 mSv, respectively. And we obtained the skin doses at the left pelvis and the right pelvis to be 2.78 and 3.08 mSv, respectively. As for reproducibility, a coefficient of variation was 0.033. The skin doses were exhibited the values corresponding from 1/100 to 1/17 of the dose limit of the public(50 mSv) at the deterministic effect. In order to make accurate measurements of the skin doses for each tube voltage, the measured values have to multiply by the displayed values of reader by a correction factor. The energy response of the OSLD with the tube voltage will be studied in the near future.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Neutron Dose Measurements Using TLDs in a 252Cf Neutron Field (252Cf 중성자장에서 열형광선량계(TLD)를 이용한 중성자 방사선량 측정)

  • Chang, Insu;Kim, Sang In;Lee, Jung Il;Kim, Jang Lyurl;Kim, Bong Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • In case of neutron dose measurement using TLDs (thermo-luminescence dosimeters), because the neutron energy dependence of the TLD is very high, the calibration of the energy response according to the characteristics of the neutron spectrum of workplace is required. In the present study, the ambient dose equivalent rates inside and around the Long-Counter (neutron detector) with narrow and complex inside in the neutron field of $^{252}Cf$ were evaluated. The calibration factors to account for the neutron energy dependence of TLDs were established for both the bare and $D_2O$ modulated $^{252}Cf$ neutron beams, respectively. The values of the TLD's measurement were compared with the computational results of the MCNPX (Monte Carlo N-Particles transport code). When using the two calibration factors of the TLD than a single calibration factor, the measured and the calculated values at the point of verification outside and inside the Long-Counter were in more good agreement. This results show that TLD should be calibrated in the reference neutron field similar to workplace situation.