• Title/Summary/Keyword: 선량길이곱

Search Result 7, Processing Time 0.019 seconds

Radiation dose and Lifetime Attributable Risk of Cancer Estimates in 64-slice Multidetector Computed Tomography (64-절편 다행검출 CT 검사에서의 환자선량과 암 발생의 Lifetime Attributable Risk(LAR) 평가)

  • Kang, Yeong-Han;Park, Jong-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.244-252
    • /
    • 2011
  • This study was to estimate the radiation dose associated with 64-slice multidetector CT(MDCT) in clinical practice and quantify the potential cancer risk associated with these examinations. Lifetime attributable risks(LAR) were estimated with models developed in the national Academies' Biological Effects of Ionizing Radiation VII report. Mean effective dose were 1.48mSv in Brain axial scan, 7.66mSv in chest routine contrast, 12.17mSv in coronary angiogram, 24.52mSv in Dynamic abdomen scan. LAR estimates for brain routine varied from 1 in 7463 for man to 1 in 4926 for women. In chest routine with contrast, LAR varied from 1 in 1449 for men to 1 in 952. LAR of Abdomen dynamic CT varied from 1 in 453 for men to 1 in 298 for women. So, 64-slice MDCT scan is associated with non-negligible LAR of cancer. Doses can be reduced by careful attention to scanning protocol.

The clinical usefulness of 64 channel MDCT and 128 channel DSCT in coronary CT angiography (관상동맥 전산화단층촬영에서 64 channel MDCT와 128 channel DSCT의 임상 유용성 평가)

  • Choi, Nam-Gil;Choi, Jae-Seong;Han, Jae-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4411-4417
    • /
    • 2010
  • This study was retrospectively to compare the exposure dose and the imaging quality in coronary CT angiography by using the 64 channel multidetector computed tomography and the 128 channel DSCT. Effective dose was calculated dose length product (DLP) by multiplied the convention factor of chest (0.017). Imaging quality was assessed by radiologists using the 5-point Likert scale. The DLP was ranged from 851 to $1277mGy{\cdot}cm$ (mean: 17.23 mSv) in the 64 channel MDCT and from 82 to $110mGy{\cdot}cm$ (mean: 1.58 mSv) in the of 128 channel DSCT, respectively. The score of imaging quality was respectively $3.31{\pm}0.62$ in 64 channel MDCT and $4.05{\pm}0.46$ in the 128 channel DSCT. The exposure dose of 128 channel DSCT has decreased 1ess 1/10. The score of imaging quality was significant difference between two modalities and the frequency (>4 good) in the 128 channel DSCT is about three times than that of the 64 channel MDCT. Therefore, the 128 channel DSCT in coronary CT angiography is clinically more effective modality for both investigators and patients.

Evaluation on Usefulness of BMI Application to Urological CT Examination (비뇨기계 CT 검사 시 체질량 지수 적용의 유용성 평가)

  • Kim, Hyeon-jin;Im, In-chul
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2018
  • The purpose of this study was to evaluate the usefulness of BMI application to Urography CT by applying different tube voltages in accordance with body mass index. Group A (n = 38) with body mass index of lower than 25 was examined with tube voltage of 100 kVp while Group B (n = 45) with a BMI of 25 and higher was examined with tube voltage of 120 kVp. C group (n = 37) with body mass index (BMI) of lower than 25 was examined with tube voltage of 120kVp. Although the difference in average dose between group A (100 kVp) and group C (120 kVp) with low body mass index (BMI) of lower than 25 was $214.8mGy{\cdot}cm$, there was no significant difference in qualitative evaluation and, compared with patient group with body mass index of 25 and higher, results obtained were rather good. Therefore, this study verified that the tube voltage of lower than 100 kVp does not have adverse effect on the quality of image for patients with body mass index (BMI) of lower than 25.

Dose and Image Evaluation of Pediatric Head Image according to CT Scan Mode and kVp Changes (CT Scan Mode와 관전압 변경에 따른 소아 두부 영상의 선량 및 영상평가)

  • Byeong-Je Kim;Dong-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.801-808
    • /
    • 2023
  • In order to minimize radiation exposure and secure diagnostic value images during CT examination of the head of children, the usefulness of volume axial mode is evaluated through comparison and analysis of exposure dose and images of volume axial mode, high pitch mode, and helical mode. Image evaluation and dose evaluation were performed in CT high pitch mode, helical mode, and volume axial mode for infants under the age of 1 according to the voltages of 70, 80, and 100 kVp tubes. The image evaluation was conducted by comparing image quality by setting ROI for each image, calculating SNR and CNR, using ONE-WAY (ANOVA) to evaluated statistical significance, and cross-examining the dose evaluation using DLP values displayed in the Dose Report. When inspected using volume axial mode, DLP values were generally low, and SNR and CNR values differed by ROI and kVp. When volume axial mode evaluated the quality of the image compared to other scan modes, the difference is not uniform. For the reason, certain modes are not considered excellent, but the exposure dose was reduced the most in terms of dose. In addition, the point that the volume axial mode can be examined at its original location, short scanning time and needless of table movement is useful for CT tests for children under 1 year of age with high radiation sensitivity.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.

Effects of Radiation Dose and Image Quality at the Coronary Angiography (관상동맥검사에서 선량과 화질에 관한 연구)

  • Ryu, Myung-Song;Choi, Nam-Gil;Han, Jae-Bok;Yang, Sook;Lee, Jong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.367-372
    • /
    • 2012
  • The aim of this study was to assess the effect of exposure factors such as kVp and mA applied by BMI on the image quality and patients absorbed dose of Coronary angiography in CT. Each data sets were into 4groups with different exposure values : Group A at 100kVp, 240mAs, Group B at 120kVp, 240mAs, Group C at 100kVp, 270mAs and Group D at 120kVp, 270mAs, and the mean of the scores of 4 groups was calculated for image quality as 4grades that is, 1(poor), 2(fair), 3(good) and 4(very good). Patient absorbed dose was calculated as DLP on the monitor. In case of absorbed dose, deviation in 2groups at 100kVp was 5.6 $mGy{\cdot}cm$, 11 $mGy{\cdot}cm$, was at 120kVp(DLP) with p<0.05. There was rather difference between groups with 100kVp or 120kVp respectively but the gaps were very little. No significant correlation was found between exposure factors and image quality in any images assessed(p>0.05), and the image quality was sufficient for diagnosis. As we applying coronary angiography, the selection of adequate exposure factors considering BMI identified might be effective for reduction of patient absorbed dose, improvement of image quality and diagnostic accuracy.

Feasibility of Pediatric Low-Dose Facial CT Reconstructed with Filtered Back Projection Using Adequate Kernels (필터보정역투영과 적절한 커널을 이용한 소아 저선량 안면 컴퓨터단층촬영의 시행 가능성)

  • Hye Ji;Sun Kyoung You;Jeong Eun Lee;So Mi Lee;Hyun-Hae Cho;Joon Young Ohm
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • Purpose To evaluate the feasibility of pediatric low-dose facial CT reconstructed with filtered back projection (FBP) using adequate kernels. Materials and Methods We retrospectively reviewed the clinical and imaging data of children aged < 10 years who underwent facial CT at our emergency department. The patients were divided into two groups: low-dose CT (LDCT; Group A, n = 73) with a fixed 80-kVp tube potential and automatic tube current modulation (ATCM) and standard-dose CT (SDCT; Group B, n = 40) with a fixed 120-kVp tube potential and ATCM. All images were reconstructed with FBP using bone and soft tissue kernels in Group A and only bone kernel in Group B. The groups were compared in terms of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Two radiologists subjectively scored the overall image quality of bony and soft tissue structures. The CT dose index volume and dose-length product were recorded. Results Image noise was higher in Group A than in Group B in bone kernel images (p < 0.001). Group A using a soft tissue kernel showed the highest SNR and CNR for all soft tissue structures (all p < 0.001). In the qualitative analysis of bony structures, Group A scores were found to be similar to or higher than Group B scores on comparing bone kernel images. In the qualitative analysis of soft tissue structures, there was no significant difference between Group A using a soft tissue kernel and Group B using a bone kernel with a soft tissue window setting (p > 0.05). Group A showed a 76.9% reduction in radiation dose compared to Group B (3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy; p < 0.001). Conclusion The addition of a soft tissue kernel image to conventional CT reconstructed with FBP enables the use of pediatric low-dose facial CT protocol while maintaining image quality.