• Title/Summary/Keyword: 석탑구조물

Search Result 11, Processing Time 0.028 seconds

Structural Analysis of Stone Pagoda Structure considering Soft Soil Ground Characteristics (연약지반 특성을 고려한 석탑구조물의 구조해석)

  • Kim, Ho-Ryong;Shin, Hyo-Bum;Park, Young-Sin;Kang, Myoung-Hee;Hong, Souk-Il;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.70-73
    • /
    • 2008
  • Because the inclination and crack of stone pagoda structure are caused by the depth difference of soft soil ground and ground subsidence in weak zone, a long-term conservation of stone pagoda structure is difficult. But it is insufficient to analyze the behavior of stone pagoda structure considering soft soil ground in our country. Therefore, we find the structural effect happening in stone pagoda structure by analyzing mechanically a specific of soft soil ground and carry out structural analysis and structural modelling of stone pagoda structure that considers soft soil ground by discrete element method.

  • PDF

Stiffness and Natural Frequency of Stone Masonry pagoda (석탑문화재의 강성과 고유진동수에 관한 연구)

  • Lee, Sung-Min;Son, Ho-Woong;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.263-270
    • /
    • 2004
  • The dynamic behavior of multi-layered stone masonry monuments, such as stone pagoda, are mainly influenced by contour condition of contacting surface of stones. These structures can be modeled as a multi-degrees of freedom system. In this case the mass of the system can be easily estimated, mean while the estimation of stiffness at junction is not simple. In this paper a method for estimating the spring constant at the contacting surface of stone is proposed. The proposed method utilizes the natural frequency of the system which can be obtained by eigenvalue analysis.

Measurement and Analysis of the Structure by Using the Terrestrial Camera (지상실체사진기를 이용한 구조물의 측정과 해석)

  • 안철호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.2 no.1
    • /
    • pp.54-64
    • /
    • 1984
  • This paper is a study on structural measurement by using a terrestrial camera. The aim of this paper is to understand the method of a composition by analyzing the geometrical compositive ratio of threestoried pagodas at Gamun-Sa, Gosun-Sa, Bulguk-Sa, Seated iron Buddha in Kwang-Jn, and Main-Seat Buddha at Sukkuram Cave-temple. Measured data and contour maps are accurately obtained by means of photogrammetry, and the following points are able to he found by analyzing them. At first, for Stone Pagodas. the breaths of the Okgesuks are made to the ratio, 8 : 7 : 6. And when an equililateral triangle and an 45$^{\circ}$ isosceles triangle are drawn of which the bases are the length of the upper Gabsuk, and then a circle is drawn whose radius is the length between the vertexes of the two triangles and its center is the vertex of the former the circle passes the upper line of the third Oksin. Also it can be found that an $70^{\circ}$ isosceles triangle being drawn at base line, the triangle passes the edge point of the upper Gabsuk and the center of the third Okgesuk. Also for Budha statues, it can be found that circles whose center is that of eyes can be drawn, and if 2 lines which pass the shoulder and the center of Buddha's body are extended, they intersect the knees.

  • PDF

Forming Process of Surface Contaminants on Ten-story Stone Pagoda of Wongaksa Temple, Seoul (서울 원각사지 십층석탑의 표면오염물 형성과정)

  • Chun, Yu Gun;Lee, Myeong Seong;Kim, Yuri;Lee, Sun Myung;Lim, Bo A
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.365-375
    • /
    • 2016
  • This study was interpreted the forming process of surface contaminants on ten-story stone pagoda of Wongaksa temple, Seoul. Results of research, we estimated that black contaminants were formed by graphite stuck carbon in air pollution substance after that gypsum was generated by chemical weathering on stone pagoda. White contaminants were built by recrystallization of calcite that were made by decomposition of finishing materials and structure on the stone surface. To preserve a long-term of stone pagoda in Wongaksa temple, there were required that continuous monitoring, anticorrosion treatment and contaminants cleaning of protective facilities.

Dynamic Test of a Full Scale Model of Five-Story Stone Pagoda of Sang-Gye-Sa (쌍계사 오층석탑 실물 크기 모델의 동적 거동 시험)

  • Kim, Jae-Kwan;Ryu, Hyeuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.51-66
    • /
    • 2001
  • There occurred a moderate size earthquake of Magnitude 5 in Whagae-Myun, Hadong-GUn, Kyongsangnam-Do on July 4, 1936. It caused severe damage to the buildings and other structures in Sang-Gye-Sa, a Buddhist Temple. The top component of a five-story stone pagoda was tipped over and fell down to the ground during the earthquake. In order to have accurate and quantitative estimate of the peak acceleration level of that earthquake, a full-scale model was constructed through rigorous verification process. The complete model was mounted on a shaking table and subjected to the dynamic tests. Two kinds of tests were performed: exploratory test and fragility test. The exploratory test was done with low acceleration level. In the fragility test, the behavior of the model was carefully monitored while increasing the acceleration level. The construction details of the model are provided and test procedures are reported. Finally important test results are presented and their implications are discussed.

  • PDF

Computational Modelling Method by Using the Natural Frequencies of Five-Story Stone Pagoda in Chongnimsa Site (고유진동수를 이용한 정림사지 5층 석탑의 구조모델)

  • Lee, Sung-Min;Lee, Ki-Hak;Park, Sun-Woo;Suh, Man-Chul;Lee, Chan-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.67-74
    • /
    • 2008
  • Multi-layered stone masonry monuments, such as stone pagoda can be modeled as a multi-degrees of freedom system. The dynamic behavior of these structures are mainly influenced by contour condition of contacting surface of stones. In this case the mass of the system can be easily estimated, mean while the estimation of stiffness at junction is not simple. In this paper a method for estimating the spring constant at the contacting surface of stone in proposed. This paper describes a method of computational modelling technique for structural analysis of stone pagodas using measurement of natural frequency and eigenvalue analysis. For this purpose Five story stone pagoda in Cchongnimsa site was selected as a model.

  • PDF

Structural Characteristics Analysis of Stone Contact Surface according to Surface Roughness and Filling Material of Stone Pagoda Structure (석탑구조물의 표면거칠기 및 충전재에 따른 석재접촉면의 구조특성 분석)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Lee, Seung-Hee;Kim, Derk-Moon;Jo, Sang-Sun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.19-27
    • /
    • 2018
  • The stone pagoda structure is treated as a discontinuous masonry structure, and the contact surface characteristics between stones is a very important factor in the discontinuum behavior analysis. So, it is necessary to find out material and structural characteristics of stone contact surface to perform the structural analysis for safety evaluation. Accordingly, it is important to analyze the material properties of stone surface and secure the structural characteristics through various contact surface states. Therefore, in this study, various test specimens applying the filler between the surface roughness and the stone in the contact surface treatment technique of the stone pagoda were manufactured, and compression test and shear test were carried out. Also, we analyzed the material and structural characteristics of the stone contact surface through the comparison of experimental results.

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site (감은사지 삼층석탑 구조)

  • Nam, si-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.329-358
    • /
    • 2005
  • The Three storied Stone pagoda in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard for Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone structure. Most studies and investigation of the stone pagoda has done mainly based on style and chronological research according to an art historical view. However, there is not an attempt to research the stone pagoda as a stone architecture. Most Korean experts at the stone pagoda has art history in their background. Engineers who can understand the structure of the stone pagoda are very limited. More architectural and engineering approach is need to research not only art historial understanding but also safety as a structure. We can find many technical know-how from our ancestors who made stone pagodas. 1. To reduce any deformation such as relaxation and sinking of BuJae which is caused by a heavy load, the BuJae (consist of a foundation stone and lower stereobates) should be enlarged. 2. A special construction method for connection between Myonsuk and Tangjoo was invented. This unique method is not used any longer after the Three storied Stone pagoda in Gameunsa Temple site. 3. The upper BuJae and the lower BuJae are missed each other by making a difference of Okgaesuk and Okgaebatchim in size. It is done for a distribution of perpendicular load and a prevention for relaxation of BuJae. 4. The center of gravity in the BuJae is located to the center of the stone pagoda by trimming the upper surface of the Okgaebatchim into a convex shape. The man who made stone pagodas had excellent knowledge on the engineering and techniques to understand the structure of the stone pagodas. We can confirm it as follows: the enlarged BuJae, dislocated connection between upper Bujae and lower BuJae, and moving the center of gravity close to the center of the stone pagoda.

Seismic Analysis of Ground for Seismic Risk Assessment of Architectural Heritage in Seoul (건축문화재 지진 위험도 평가를 위한 지반의 내진해석 : 서울지역을 중심으로)

  • Han, Jung-Geun;Keon, Seong-Kon;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.133-141
    • /
    • 2013
  • This paper describes the earthquake risk evaluation of 15 sites of architectural heritages, which are considered ground conditions of sites in Seoul. In order to acquire the input data of earthquake response analysis, surface wave exploration was performed at the site. Earthquake response analysis and 3D earthquake safety evaluation were carried out under the base of scenario earthquakes. Ground displacements of areas, which are located on architectural heritages, are showed about 0.5 mm ~ 9.7 mm, and it was analyzed to small affected by earthquakes. In case of Naksungdae three-story stone pagoda, ground displacement is similar to the others. However, displacement of three-story stone pagoda with granite is 30 mm on the top, because the greatest occurrence of that is caused by stress release at seismic wave effect.

Quantitative Analysis on Intensity of 1936 Jirisan Earthquake by Estimating Seismic Response Characteristics at the Site of Five-story Stone Pagoda in Ssang-gye-sa (쌍계사 오층 석탑 부지의 지진 응답 특성 평가를 통한 1936년 지리산 지진 세기의 정량적 분석)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Jae-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.187-196
    • /
    • 2008
  • An earthquake of magnitude 5.0 occurred at Ssang-gye-sa, a Buddhist temple in Jirisan, located near the southern border of the Korean peninsula on 4 July 1936. It resulted in severe damage of several buildings and structures in Ssang-gye-sa. Particularly, the top component of a five-story stone pagoda in the temple was tipped over and fell down during the earthquake. This earthquake damage case would be usefully applied to estimating the intensity of ground motion in the Korean peninsula, a moderate seismicity region, where strong motion has never been recorded with the exception of historic seismic events. In order to estimate the local site effects and the corresponding ground motion at Ssang-gye-sa site, intensive site investigations including borehole drilling and in-situ seismic tests such as crosshole and SASW tests were performed in the temple area. Based on the site characteristics, site-specific seismic response analyses using various input motions were conducted for a representative Ssang-gye-sa site by means of both one-dimensional equivalent-linear and nonlinear methods with six input rock outcrop acceleration levels ranging from 0.044g to 0.220g. The resultant site-specific seismic responses indicated the amplified ground motions in the short-period range near the site period of Ssang-gye-sa. Furthermore, the intensity on rock outcrop of the 1936 Jirisan earthquake was estimated by making a comparison between the site responses analysis results in this study and the full-scaled seismic test of pagoda model in the prior study.