• Title/Summary/Keyword: 석탄층 가스

Search Result 168, Processing Time 0.03 seconds

Effects of Gas Cleanup Temperature on the IGCC Efficiencies(I) (석탄가스 정제온도가 IGCC 효율에 미치는 영향(I))

  • 이윤경;조상기;김종진
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.79-84
    • /
    • 1998
  • 고압 분류층 가스화기는 탄소전환율을 높이기 위해 고온, 즉 Ash Slagging 조건보다 높은 온도에서 운전된다. 따라서 분류층 가스화기에서 생산되어 배출되는 Raw Syngas는 고온의 현열을 보유하고 있다. 고온의 반응과정으로 인하여 타르나 기타 중탄화수소가 생성되지 않으므로 발생열을 회수하기가 용이하며 가스정제 및 불순물 제거과정도 단순해진다. (중략)

  • PDF

A study on the Gasifier Modeling using a Chemical Equilibrium (화학평형을 이용한 가스화기 모델링에 관한 연구)

  • 정근모;임태훈;오인환;박명호
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • This study is to obtain some basic data which are prerequisite for the conceptual design of gasification process based on entrained-bed type gasifier. The Gibbs free energy minimization method is used to analyze the chemical equilibrium in the gasifier. The modeling results which consider the conventional mass balance and heat balance are compared with the experimental data published by Electric Power Research Institute. The analysis shows that the reaction in a entrained-bed gasifier is influenced mainly by the amount of oxidant, by the temperature of gasifier and by the type of coals.

  • PDF

Gasification of Coal-Petroleum Coke-Water Slurry in a 1 ton/d Entrained Flow Gasifier (1톤/일 분류층가스화기에서 석탄과 석유코크스 혼합 슬러리의 가스화특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Hong, Jai-Chang;Ra, Ho Won;Lee, Jae Goo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.561-566
    • /
    • 2008
  • Gasification plant using petroleum coke for refinery and power generation process is increased from considering petroleum coke as a valuable fuel. In this study, gasification of petroleum coke was performed to utilize petroleum coke and to develop essential technology using 1T/D coal gasification system. In case of petroleum coke gasification, because of lower reactivity, consumption of oxygen is higher than coal gasification. The calorific value of syngas from petroleum coke mixed with coal at a mass ratio of 1:1 shows about $6.7{\sim}7.2MJ/Nm^3$. Although carbon conversion could reach more than 92% according to oxygen amount, cold gas efficiency shows lower value than the case of coal. Therefore, it was shown that complemental study in burner design to atomize slurry droplet is required to elevate gasification performance of petroleum coke which has lower reactivity than coal.

Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed (저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구)

  • Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2015
  • In the present work, a basic study on the in-situ biogenic methane generation from low grade coal bed was conducted. Lignite from Indonesia was used as a sample feedstock. A series of BMP (Biochemical Methane Potential) tests were carried out under the different experimental conditions. Although nutrients and anaerobic digester sludge were added to the coal, the produced amount of methane was limited. Both temperature control and particle size reduction showed little effect on the increase of methane potential. When rice straw was added to lignite as an external carbon source, methane yield of 94.4~110.4 mL/g VS was obtained after 60 days of BMP test. The calorific value of lignite after BMP test decreased (4.5~12.1 %) as increasing the content of rice straw (12.5~50 wt % of lignite), implying that anaerobic digestion of rice straw led to partial degradation of lignite. Therefore, rice straw could be used as an external carbon source for the start-up of in-situ biogas generation from low grade coal bed.

Development of a Pressure Core Sampler with Built-in Data Logging System (데이터 기록 장치가 내장된 PCS (Pressure Core Sampler)의 개발)

  • Kim, Sang Il;Cho, Young Hee;Ki, Jung Seck;Kim, Dong Wook;Lee, Kye Kwang;Kim, Hae Jin;Choi, Kook Jin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.423-429
    • /
    • 2014
  • Development of a reservoir pressure core sampler (PCS) with a built-in data logging system (DLS) for recording real-time temperature and pressure observations is critical in domestic hydrocarbon production to accurately measure and monitor reserves of shale gas, coalbed methane, and gas-hydrate. Another purpose of this new technology is to minimize the loss of gas from the core as the drill core is collected. This is accomplished by maintaining the pressure of the sample from the moment the drill core is obtained at depth, thus allowing an accurate analysis of shale gas, coalbed methane gas, and gashydrate within the core. Currently, the United States and European countries have monopolized the development and marketability of PCS technologies. We are thus developing a reservoir PCS by analyzing the operating principle and mechanisms of the existing PCS, and by conducting tests on the existing PCS. We further aim to develop a PCS with a maximum operating pressure of 100 bar, a maximum operating temperature of $-20^{\circ}C$ to $40^{\circ}C$, and a pressure loss rate of 10%.

A Study on the Thermal Designs of 300 MW-Class IGCC Plant (300 MW급 IGCC 플랜트의 열 설계 연구)

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-89
    • /
    • 2002
  • IGCC (Integrated Coal Gasification Combined Cycle) is a technology that generates electric power using coal gasification and gasified fuel. Carbon conversion value of IGCC is higher and the influence on the environment is lower than the pulverized coal power plant. Especially, in the nations where the weight of fossil fuel for power generation is remarkably high like in Korea, IGCC stands out as an alternative plan to cope with sudden limitation for the emissions. In this paper, system design study for the commercial IGCC system which the introduction is imminent to Korea was performed. Two cases of entrained gasification process are adapted, one is FHR(full heat recovery) type IGCC system for high efficiency and the other is Quench type IGCC system for low cost. System simulations using common codes like AspenPlus were performed for each system. In the case of Quench system, system option study and sensitivity analysis of the air extraction rate was performed. Thermal performance result for the FHR system is 42.6% (HHV, Net) and for the quench system is 40% (HHV, net) when 75% air is extracted.

The Analysis of ECBM Efficiency about Sorption Rate between CH4 and CO2 (석탄층내 CH4과 CO2의 흡착거동에 의한 ECBM 효율성 분석)

  • Kim, Kihong;Sung, Wonmo;Han, Jeongmin
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 2013
  • In order to asses gas production behavior for $CO_2$ ECBM, the sorption charcteristics on coal are considered to be a key factor. In this study, we have investigated the change of the sorption rate of adsorbed gas as a function of pressure and temperature below the appropriate depth for $CO_2$-ECBM. The experiment were carried out under four different temperatures varying from $15^{\circ}C$ to $45^{\circ}C$, while the coal pressure was varied from atmosphere to 1,400 psi for every temperature. From this results, the sorption rate both $CO_2$ and $CH_4$ increased with increasing the coal pressure. Otherwise, the sorption rate both $CH_4$ and $CO_2$ decreased linearly as the coal temperature increased. From the sensitivity studies on pressure and temperature change, it was experimentally identified that $CO_2$ sequestration rate and $CH_4$ production rate are better at deeper depths below a depth of 800 m in coal seams. However, the results showed continued decline in the increasing ratio of ECBM with formation depth.

The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System (Alstom Power의 가압유동층 복합발전 시스템 특성)

  • 이윤경;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Pressurized fluidized bed combustion unit is operated at pressures of 1~1.5 MPa with combustion temperatures of 850~87$0^{\circ}C$. The pressurized coal combustion system heats steam, in conventional heat transfer tubing, and produces a hot gas supplied to a gas turbine. Gas cleaning is a vital aspect of the system, as is the ability of the turbine to cope with some residual solids. The need to pressurize the feed coal, limestone and combustion air, and to depressurize the flue gases and the ash removal system introduces some significant operating complications. The proportion of power coming from the steam : gas turbines is approximately 80:20%. Pressurized fluidized bed combustion and generation by the combined cycle route involves unique control considerations, as the combustor and gas turbine have to be properly matched through the whole operating range. The gas turbines are rather special, in that the maximum gas temperature available from the FBC is limited by ash fusion characteristics. As no ash softening should take place, the maximum gas temperature is around 90$0^{\circ}C$. As a result a high pressure ratio gas turbine with compression intercooling is used. This is to offset the effects of the relatively low temperature at the turbine inlet.

HCl Removal from Coal-derived Syngas by the Solid Sorbents (고체 흡수제를 이용한 석탄 합성가스 중 HCl 정제)

  • Baek, Jeom-In;Lee, Kisun;Wi, Yong-Ho;Choi, Dong Hyeok;Eom, Tae-Hyoung;Lee, Joong Beom;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.73.2-73.2
    • /
    • 2011
  • 석탄 합성가스 중에는 $H_2S$, HCl, $NH_3$와 같은 불순물이 포함되어 있다. 이러한 가스들은 오염가스 배출과 관련한 환경기준 준수와 터빈과 같은 설비의 보호를 위해 제거되어야 한다. 석탄 합성가스 중 HCl 농도는 탄종에 따라 다르기는 하지만 많게는 1000 ppmv 수준까지 존재한다. 합성가스를 이용하여 발전을 하는 경우 가스터빈 보호를 위해 HCl은 <3 ppmv 이하로 정제되어야 하고, 합성가스를 연료전지에 사용하고자 하는 경우에는 HCl을 <0.5 ppmv 수준까지, 화학원료로 사용하고자 하는 경우에는 <10 ppbv 수준까지 정제하여야 한다. 또한 HCl은 고온 탈황공정에 사용되는 흡수제의 활성에도 장기적으로 부정적인 영향을 주기 때문에 고온에서 HCl을 정제할 수 있는 흡수제가 필요하다. 본 연구에서는 알칼리금속을 활성물질로 사용하여 분무건조법으로 제조한 HCl 흡수제에 대해 물성 및 HCl과의 반응성을 살펴보았다. $300-500^{\circ}C$ 영역에서 K-계 및 Na-계 흡수제에 대해 고정층반응기에서 HCl 가스를 함유한 모사 합성가스를 이용하여 상압 조건에서 Cl 흡수능을 측정한 결과 15wt% 이상의 흡수능을 나타내었으며 반응온도가 높을수록 흡수능이 증가함을 알 수 있었다. XRD 분석을 통하여 Cl은 K 및 Na와 반응하여 KCl과 NaCl을 형성하면서 흡수됨을 알 수 있었다. 20 bar 조건에서 실험한 결과에서도 동일한 경향의 반응성을 나타내었으며 반응온도가 낮을수록 흡수능은 감소하지만 Cl을 더 낮은 농도로 정제할 수 있었다. 본 실험에 사용된 Na 및 K계 흡수제는 모두 연소 후 배가스 중 $CO_2$를 제거하기 위한 흡수제로 사용되는 고체 흡수제이다. 석탄화력발전소 배가스에 연계되어 $CO_2$ 회수실험에 사용되었던 사용 후 $CO_2$ 흡수제에 대해 HCl 흡수 실험을 수행한 결과에서도 우수한 HCl 제거 성능을 보여 주었다. 이로부터, 폐 $CO_2$ 흡수제의 HCl 흡수제로서의 활용가능성을 확인 하였다.

  • PDF