• Title/Summary/Keyword: 석유 폐촉매

Search Result 25, Processing Time 0.022 seconds

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

The study of characterization of extracted vanadium in waste catalyst for vanadium redox flow battery (폐촉매에서 추출한 바나듐 레독스 흐름전지용 바나듐의 특성 연구)

  • Kang, Ung Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.598-602
    • /
    • 2018
  • This study examined the characteristics of the waste catalyst used in the petroleum refinery operations. The total pore volume, specific surface area, and average pore size of the spent catalyst used in the petroleum refinery operations were 3.96cc/g, 13.81m2/g, and 1.15A, respectively. The weight loss observed in the range from $25^{\circ}C-700^{\circ}C$ for the spent catalysts using TG and DTA was approximately 23 wt. %. EDS analysis of the waste catalyst sample showed that the five major components were vanadium, nickel, manganese, iron, and copper. The extraction system is attractive for liquid-liquid extraction. In this study, Cynex 272 was used to extract vanadium from waste catalyst. The electrochemical characteristics of the extracted vanadium solution were measured by cyclic voltammetry (CV). As a result, an oxidation / reduction peak appeared, indicating the potential of an electrolytic solution.

Sulfuric Acid Dissolution of Carriers for Recovering Platinum from the Spent Petroleum Catalysts (석유 폐촉매로부터 백금 회수를 위한 담체의 황산용해)

  • Lee Jae-chun;Jeong Jinki;Kim Byung-su;Kim Min Seuk;Cho Young Soo
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of platinum metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina carrier with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid, and pulp density on the dissolution of carrier was investigated. When the carrier of platinum catalyst was $\Upsilon-Al_2$O$_3$ about 95% alumina was dissolved in 6.0 M sulfuric acid at $100^{\circ}C$ for 2 hours. When the carrier was the mixture of $\Upsilon-Al_2$$O_3$ and $\alpha$-$Al_2$$O_3$ about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was also obtained as byproduct.

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

A Study of the Research Trends and the Material flow on the Unrecycled Materials in Korea - The Current Situation of Recycling Technology for Waste Resources in Korea(2) - (국내(國內) 미이용자원(未利用資源)을 위한 회수(回收) 연구동향(硏究動向) 및 물질(物質)흐름 - 국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술(回收技術) 동향조사(動向調査)(2) -)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck;Min, Ji-Won
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.63-76
    • /
    • 2007
  • Typical examples as unrecycled materials in Korea were Zinc from the electric arc furnace dust (EAF Dust), and Moiybdenium and Vanadium from the desulfurizing spent catalyst of petrochemical industries. In the otherwise, though recovery of valuable metals from the waste electronic scrap such as printed circuit boards (PCBs) and platinum group metals (PGM) from the waste automobile catalyst have been interesting issues, it is difficult to collect the exact informations or statistics on their material flow system. In this article, The current domestic research trends for unrecycled or less recycled materials have been reviewed, and material flow and recycling technologies on the desulfurizing spent catalyst were surveyed.

A study on the recovery of chromium from metal-plating wastewater with spent catalyst (폐산화철촉매에 의한 도금폐수중 크롬이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • A large tons of spent iron oxide catalyst come from the Styrene Monomer(SM) production company. It is caused to pollute the land and underground water due to the high alkali contents in the catalyst by burying them in the landfill. In order to recycle the spent catalyst, a basic study on the recovery of chromium ion from metal plating wastewater with the spent catalyst was carried out. The iron oxide catalyst adsorbed physically $Cr^{+6}$ in the lower pH 3.0, that is the isoelectric point of the spent catalyst. It was found that the iron oxide catalyst reduced the $Cr^{+6}$ into Cr+3 by the oxidation of ferrous ion into ferric ion on the surface of catalyst, and precipitated as $Cr(OH)_3$ in the higher than pH 3.0. The $Cr^{+6}$ was recovered 2.0∼2.3g/L catalyst in the range of pH 0.5∼2.0, but it was recovered 1.5 g/L catalyst at pH 3.0 of wastewater. The recovery of Cr was increased as the higher concentration in the continuous process, but the flowrates were nearly affected on the Cr recovery.

Treatment of Metal Wastes with Manganese Nodules (망간단괴 제연 시 금속계 폐자원의 처리)

  • Park Kyung-Ho;Nam Chul-Woo;Kim Hong-In;Park Jin-Tae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.17-21
    • /
    • 2005
  • Deep-sea Manganese nodules was treated with reduction-smelting process with adding the spent Ni-Cd battery or the cobalt contained spent catalyst for recovery of nickel and cobalt metals. The nickel in the spent Ni-Cd battery could be recovered by adding $5\%$ coke as a reducing agent regardless of the amount of battery added. However, to recover cobalt from the spent catalyst, it is require to add more coke for reduction of cobalt oxide in the catalyst. The treatment of metal wastes with manganese nodules can contribute to lower the cost for the processing of nodules and to facilitate the recycling of metal wastes.

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Catalytic Oxidation of Aromatic Compounds over Spent Ni-Mo and Spent Co-Mo based Catalysts: Effect of Physico-chemical Pretreatments (폐 Ni-Mo 및 폐 Co-Mo계 촉매상에서 방향족 화합물의 촉매산화: 물리화학적 전처리 효과)

  • Shim, Wang Geun;Kang, Ung Il;Kim, Chai
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Transition metal based spent catalysts (Ni-Mo and Co-Mo), which were scrapped from the petrochemical industry, were reused for the removal processes of volatile organic compounds (VOCs). Especially the optimum regeneration procedures were determined using the removal efficiency of VOCs. In this work, the spent Ni-Mo and spent Co-Mo catalysts were pretreated with different physic-chemical treatment procedure: 1) acid aqueous solution, 2) alkali solution, 3) chemical agent and 4) steam. The various characterization methods of spent and its regenerated catalysts were performed using nitrogen adsorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS). It was found that all spent catalysts were found to be potentially applicable catalysts for catalytic oxidation of benzene. The experimental results also indicated that among the employed physico-chemical pretreatment methods, the oxalic acid aqueous (0.1 N, $C_2H_2O_4$) pretreatment appeared to be the most efficient in increasing the catalytic activity, although the catalytic activity of spent Ni-Mo and spent Co-Mo catalysts in the oxidation of benzene were greatly dependent on the pretreatment conditions. The pretreated spent catalysts at optimum condition could be also applied for removing other aromatic compounds (Toluene/Xylene).

Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution (석유화학공정 폐촉매에 함유된 희유금속의 유기산 침출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.36-45
    • /
    • 2019
  • The spent petroleum catalysts contain rare metals such as vanadium, nickel, molybdenum, and cobalt. Therefore, the leaching of these rare metals from spent petroleum catalysts by organic acid was investigated in the present study. The leaching efficiency of metals by organic acid was in the following order: oxalic acid > tartaric acid > citric acid > maleic acid > ascorbic acid. Among the organic acids employed in this work, oxalic acid can be considered to be superior to the other acids in terms of metals leaching efficiency. The effect of several leaching conditions such as temperature, acid concentration, pulp density, stirring speed, and reaction time on the leaching of metals was investigated. Vanadium and molybdenum were selectively dissolved by oxalic acid from the spent catalysts. The leaching kinetics of vanadium by oxalic acid was also investigated. An activation energy of 8.76 kJ/mol indicated that the leaching kinetics of vanadium by oxalic acid solution was controlled by mass transfer.