• Title/Summary/Keyword: 석션앵커

Search Result 16, Processing Time 0.026 seconds

Investigation of the Rotational Displacement of the Suction Anchor Subjected to the Inclined Pullout Load in Silty Sand (사질토 지반에서 경사 인발 하중을 받는 석션 앵커의 회전 거동 평가)

  • Bae, Jun-Sik;Jeong, Yeong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.267-273
    • /
    • 2020
  • Suction anchors are used for floating structures because they have advantages in installation and stability. Recently, the demand for floating structures requiring low allowable displacement has increased. Thus, it is strongly suggested that the displacement of the suction anchor be evaluated. However, conventional studies regarding suction anchors have concentrated on the capacity of the anchor, and research on the displacement of the anchor is limited. In particular, rotation is the primary behavior of a suction anchor subjected to an inclined load, and related information has been insufficient. Therefore, the main objective of this paper is to investigate the rotation behavior of a suction anchor via centrifuge model tests. The experimental parameters are the inclination of the pull-out load, anchor dimensions, and aspect ratio. The rotation values of suction anchors were compared using a series of load-rotation curves. The results show that the inclination of the load has a dominant influence on the rotation behavior of the suction anchor.

Numerical Analysis of Group Suction Anchor of Parallel Arrangement Installed in Sand Subjected to Pullout Load (모래지반에 설치된 병렬식 그룹석션앵커의 인발하중에 대한 수치해석 연구)

  • Kim, Surin;Choo, Yun Wook;Kwon, Osoon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.61-69
    • /
    • 2014
  • In this study, the performance of group suction anchors installed in sand and subjected to pullout loading was investigated by numerical analysis. The group suction anchors consist of two or three units rigidly connected to each other in parallel array and the pullout resistances were compared with that of a single anchor. Parametric study was performed using numerical models to study the effect of the physical conditions of the group anchor. The parameters include the skirt length to diameter ratio of a unit suction anchor, the pad-eye location, inclination of loading and the spacing between unit suction anchors. The analysis shows that the ratios of the pullout capacity of double suction anchor and triple suction anchor to that of single anchor are 1.7 and 2.4, respectively. The ratio increases with the increase in the spacing between the unit anchors. The other parameters such as the skirt length to the diameter ratio, the location of the pad-eye and the loading inclination have negligible effect on the ratio of pullout resistances of the group anchor to the single anchor.

Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique (ALE 기법을 이용한 모래지반에서 석션 매입 앵커의 인발 거동 분석)

  • Na, Seon Hong;Jang, In Sung;Kwon, O Soon;Lee, Seung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2014
  • The embedded suction anchor, ESA, is one type of mooring anchor systems which utilizes the suction pile or caisson to penetrate the anchor into the sea bed and develops its capacity under pullout load. In this study, the numerical analysis using ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to simulate the pullout behavior of the ESA, and the results were compared to those of the previous research, centrifuge model tests and the analytical method based on limit equilibrium theory. The pullout behaviors of the ESA under horizontal, vertical, and inclined loading were evaluated. The analysis results showed that the maximum horizontal pullout load was developed when the location of loading point was at the mid-point, and the each vertical pullout load gave the similar value regardless of the locations of the loading points. The pullout load decreased as the load inclination angle increased at the mid-point of the anchor.

Analytical Parametric Study on Pullout Capacity of Embedded Suction Anchors (매입된 석션앵커의 인발력에 대한 분석적 매개변수의 연구)

  • Boonyong, Sorrawas;Park, Ki Chul;Kim, In Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.182-189
    • /
    • 2015
  • The Embedded Suction Anchor (ESA) is a type of permanent offshore foundation that is installed by a suction pile. To increase the loading capacity against pullout, three wings (vertical flanges) are attached along the circumference at 120 degrees apart. Analytical parametric study using the proposed analytical solution method has been conducted to identify the effects of several parameters that are thought to influence the behavior of ESAs. The analysis results show that the pullout capacity increases as the anchor depth and the soil strength increase, and decreases as the load inclination angle increases. The anchor having square projectional area and being pulled horizontally at the middle of its length provides the highest pullout capacity.

Variation in the Pullout Capacity according to the Tilt and Misorientation of a Floating Offshore Wind Turbine Suction Anchor Using Geometric Method (기하학적 방법을 이용한 부유식 해상풍력 석션앵커의 수직도와 회전오차에 따른 인발지지력 변화)

  • Dae-Hwan Kim;Na-Young Jung;Won-Hyo Lee;Tae-Hyung Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.95-104
    • /
    • 2024
  • In this study, geometric calculation was performed to investigate the influence of the combined effect of tilt and misorientation on the pullout capacity of suction anchor used in floating offshore wind turbine. When considering the combined effect of tilt and misorientation, it was observed that they do not proportionally affect the pullout capacity but rather influence each other relatively. Criteria considering both tilt and misorientation are not provided in existing literature or DNV recommendation. Therefore, based on the comprehensive results of this study, a proposed decrease in pullout capacity within 3% is suggested.

Evaluation of Pullout Capacity of Embedded Suction Anchors in Uniform Clay using Numerical Analysis with ALE(Arbitrary Lagrangian Eulerian) Technique (ALE 기법이 적용된 수치해석을 통한 점토지반에서 석션 매입 앵커의 인발 저항력 평가)

  • Na, SeonHong;Jang, In-Sung;Kwon, OSoon;Lee, Seung-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2428-2435
    • /
    • 2014
  • Numerical analysis with ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to evaluate the pullout capacity of the embedded suction anchors (ESA) in uniform clay. The numerical method was verified by the previous study, analytical results based on limit-equilibrium theory and centrifuge tests. The pullout capacity of the ESA under horizontal, vertical, and inclined loading were evaluated, and the effect of initial rotation of the ESA on pullout capacity was also investigated. The analysis results showed that the maximum horizontal capacity was obtained at the mid-point, and the each vertical capacity gave the similar value regardless of the loading points. Furthermore, the inclined capacity was decreased as the load inclination angle increased at the mid-point of the anchor, and almost the same pullout capacity was obtained when the initial rotation angles were below 30 degrees.

Estimation on External Forces Applied to Suction Caisson Using Seepage Analysis (침투해석을 이용한 석션 케이슨에 작용하는 외력 평가)

  • Kim, Jeongsoo;Jeong, Yeon-Ju;Park, Min-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.317-325
    • /
    • 2019
  • A suction caisson has been widely used for anchor and foundation of offshore structures due to its broad application, simple installation, and rapid construction. In design of suction caisson foundation, the bearing capacity and the stability of soil are mainly dealt with and analysis methods for them are presented in design codes related to the foundation. On the other hand, the method for structural safety analysis of the suction caisson is not generalized, in particular for load modeling of the caisson under suction. Consequently, there are difficulties in design of the caisson cross section. For this reason, this study analyzed the magnitude and distribution of pore water pressure on inner and outer surface of the caisson using theoretical and numerical seepage analyse, and an approach to reasonably estimate the load applied to the structural analysis of the caisson was presented. Furthermore, effects of penetration depth, anisotropy of permeability, and suction pressure on the pore water pressure were analyzed.

Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand (세립 사질토 지반에 설치된 석션 앵커의 수평 지지력)

  • Kim, Surin;Choo, Yun Wook;Kim, Dong-Soo;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.