• Title/Summary/Keyword: 석면노출

Search Result 50, Processing Time 0.029 seconds

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

Asbestos Exposure and Risk Assessment by ABS(Activity Based Sampling) for Former Asbestos Mining Areas in Korea (우리나라 일부 석면광산 지역에서 ABS를 이용한 석면노출 및 위해성 평가)

  • Lee, Junhyeok;Kim, Daejong;Choi, Sungwon;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2015
  • Objectives: The aim of this study was to investigate the exposure and risk assessment of residents near asbestos mines in Korea. Methods: To assess asbestos types and airborne concentrations, air monitoring was performed in the neighborhoods of Kwangcheon (KC) and Sinsuk (SS) mines, which were leading South Korean mines in the past. In addition, activity-based-sampling (ABS) of residents' particular activities were conducted in order to estimate the Excess Lifetime Cancer Risks (ELCRs) for the residents. Conclusions: The average concentration of airborne asbestos in KC was 0.0014 f/cc and 0.0015 f/cc by PCM and TEM, respectively. In SS it was equal at 0.0012 f/cc by PCM and TEM. No statistically significant difference was found in the average concentration of airborne asbestos between the two mines. The average asbestos concentration of ABS was 0.0048 f/cc (PCM) and 0.0042 f/cc (TEM) in KC, while it was 0.0137 f/cc (PCM) and 0.0125 f/cc (TEM) in SS. It was found that the average asbestos concentration of ABS in SS was statistically significantly higher than that of KC (p<0.01). The results of ELCRs by scenario in KC showed that the scenarios of bicycle, car, weed control, weed whacking, child playing in the dirt, and physical training fell within $1{\times}0^{-6}-1{\times}10^{-4}$, which is the acceptable range of ELCR. The scenarios of motorcycle, walker, digging, and field sweeping, however, exceeded the acceptable range. In SS, only the scenario of car fell within the acceptable range, while all of the other scenarios exceeded the acceptable range.

Health Effects of Environmental Asbestos Exposure (환경성 석면노출의 건강영향)

  • Kang, Dong-Mug
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.71-77
    • /
    • 2009
  • In Korea, asbestos related diseases (ARDs) associated with occupational and environmental asbestos exposures have been reported, and commercial products contaminated with asbestos have gathered huge public attentions recently. Review of previous studies was conducted. Whereas asbestos consumptions among developed countries have decreased, those of Asian countries have increased, which showed typical international transfer of hazardous industries. In Korea residents around former asbestos mines had ARDs, which were reported in many countries such as South Africa, Canada and Australia. ARDs among residents around asbestos factories were found in many countries such as United Kingdom, United States and Italia, and increased relative risks were reported among residents around asbestos textile factories in Korea. Increased air asbestos concentrations by environmental asbestos leakages from factories were correlated with higher malignant mesothelioma incidence rates. When air dispersion model applied, excess incidence rate as far as 2.5 km from a factory were observed. As mesothelioma incidence rate, a representative index of ARD, in Korea has not reported systemically, mandatory reporting system by health personnel who diagnose the disease needs to be introduced. It is hard to conclude that commercials with contaminated asbestos do not have adverse health effects, and further studies are needed to solve these public questions.

Asbestos Exposure and Health Risk Assessment in Asbestos-Containing Buildings (석면함유 건축물의 석면 노출 및 위해성 평가)

  • Jeong, Jae-Won;Kim, Kwang-Su;Cho, Sun-Ja;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1069-1078
    • /
    • 2012
  • This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cacer risks(ELCRs) in asbestos-containing buildings for maintenance and management. The range of airborne asbestos concentration of 33 buildings was 0.0018 ~ 0.0126 f/cc and one site exceeded indoor air-quality recommended limit 0.01 f/cc. And ELCRs based on US EPA IRIS(Integrated risk information system) model are 1.5E-06 ~ 3.9E-05 levels, and there was no site showed 1.0E-04 (one person per million) level or more, and 11 sites showed 1.0E-05 (one person per 100,000 people) level or more. To prevent the release of asbestos fibers, it needs operation and maintenance of asbestos-containing building materials, and there are some methods such as removal, repairment, enclosure and encapsulation. In conclusion, a risk-based air action level for asbestos in air is an appropriate metric for asbestos-containing building management.

A Study on asbestos fibers and the notice of inhabitant in the Bu-pyung station (부평역에서의 공기중 석면 노출 실태 및 인식도 조사)

  • 변상훈;주종순;손종렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • Asbestos is composed of long thin fibers approximately diameter $0.02\mu\textrm{m}$ and flexibility, strength, electrical, thermal conditions. The most common asbestos are : Chrysotile(white), Crocidolite(Blue), Amosite(Brown). Asbestos was first introduced in the Korea in 1960 and installation of these products continue through the late 1970's and even the early 1980's. Bu-pyung basement stores in Korea were surveyed from September 25 to October 26, 2001. The purpose of this research was to evaluate worker-exposure to asbestos, comparing to the standards and to research notice of inhabitants about asbestos. Fifteen personal samples and six areas were collected using Gillian Air Sampler. Result of this research were as follows. 1. The most of asbestos exposure concentrations keeps to the criterion(OSHA(Occupational Safety and Health Adminisoation), NIOSH) but forty three percent of the Six samples exceeded the EPA (Environmental protection Agency) of 0.01 fibers/cc. 2. All of places compliced to the standards but there is no "Safe level" of asbestos exposure to the people. Especially people who are expose more frequently over a long time are more at risk.

Health Risk Assessment and Evaluation of Asbestos Release from Asbestos-cement Slate Roofing Buildings in Busan (부산시내 석면슬레이트지붕 건축물로부터의 석면 노출 및 건강위해성 평가)

  • Jeong, Jae-Won;Cho, Sunja;Park, Geun-Tae;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1579-1587
    • /
    • 2013
  • This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate roofing (ASR) building. Total number of ASR buildings was into 21,267 in Busan, and 82.03 percent of the buildings was residential houses, and 43.61 percent of the buildings was constructed in 1970s. For this study, ten buildings were selected randomly among the ASR buildings. The range of airborne asbestos concentration in the selected ten ASR buildings was from 0.0016 to 0.0067 f/mL, and the concentration around no-admitted ASR buildings was higher than that around admitted buildings. The ELCR based on US EPA IRIS (integrated risk information system) model is within 3.5E-05 ~ 1.5E-04 levels, and the ELCR of no-admitted ASR buildings was higher than 1.0E-04 (one person per million) level that is considered a more aggressive approach to mitigate risk. These results indicate that the cancer risk from ASR buildings is higher than other buildings, and systematic public management is required for control of no-admitted ASR buildings within near future.

Airborne Asbestos Fiber Concentration in Korean Asbestos-Related Industry from 1994 to 2006 (1994년부터 2006년까지 한국 석면취급 사업장의 석면 노출농도)

  • Yi, Gwangyong;Shin, Yong Chul;Yoon, Chungsik;Park, Dooyong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.123-136
    • /
    • 2013
  • Objectives: This paper was prepapred to report airborne asbestos fiber concentrations in asbestos textile, brake-lining, commutator, and building materials manufacturing industries, and some other asbestos related industries in Korea from 1994 to 2006. Methods: Airborne asbestos data that have been sampled and analyzed in the above industries during 1994-2006 were collected. These data were reviewed to scrutinize the qualified data based on the records such as sampling and analyzed method and quality control procedures. All asbestos data were generated using the National Institute for Occupational Safety & Health (NIOSH) Method 7400. Results: Average concentration of asbestos fiber was 2.14 fibers/cc(0.02-15.6 fibers/cc) in the asbestos textile industry, 0.26 fibers/cc(0.01-1.01 fibers/cc) in the building-materials industry, 0.15 fibers/cc(0.01-0.93 fibers/cc) in the brake-lining manufacturing industry, and 0.14 fibers/cc(0.03-1.36 fibers/cc) in the commutator producing industry. For these industries, the percentage of samples of which asbestos fiber concentrations above the limit of exposure(0.1 fibers/cc) was 97.6% in the asbestos textile industry, 62.3% in the building-materials industry, 53.5% in the brake-lining manufacturing industry, and 34.3% in the commutator producing industry. Asbestos fiber concentration was below the limit of exposure in the gasket producing, petrochemistry, musical instrument producing industries, and the brake-lining exchange operations. Conclusions: Airborne asbestos fiber level in the asbestos textile, brake-lining producing, commutator and building-material producing industries was above the limit of exposure, but in the gasket producing, petrochemistry, musical instrument producing industries and the brake-lining exchange operations were below the limit of exposure.

Assessment of asbestos exposure level of workers handling waste containing asbestos (석면함유폐기물 취급근로자의 석면노출수준 평가)

  • Jeong, Jee Yeon;Kim, Eun Young
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2018
  • Objectives: There have been many studies on exposure assessment of workers at companies using asbestos as a raw material and at sites of the removal of materials containing asbestos. However, no research has been carried out on the asbestos exposure of workers in industries involving asbestos-containing waste, such as workers at collection and transportation service companies, mid-treatment companies(solidification of asbestos-containing waste), and landfill sites. The objective of this study was to assess the asbestos exposure concentrations of workers in industries handling waste containing asbestos. Methods: For this study, we carried out field investigations at 15 companies: seven collection and transportation service companies, three mid-treatment companies, and five final treatment companies(landfill sites). We took both personal and area samples. Results: The range of asbestos exposure levels of workers handing asbestos-containing wastes at collection, mid-treatment, and landfill companies were 0.000 fibers/cc-0.009 fibers/cc, 0.000 fibers/cc-0.038 fibers/cc, and 0.000 fibers/cc-0.024 fibers/cc, respectively. Conclusions: The asbestos exposure levels of workers at mid-treatment companies were higher than those at collection and transportation companies and at final treatment companies. In the case of collection and transportation workers, the possibility of exposure to levels exceeding those found in the present study is not particularly high considering the characteristics of the work. However, in the case of intermediate or final disposal workers, it is considered that there is a possibility of exposure to levels above those found in this study.

A Study on Exposure Among Asbestos Textile Workers and Estimation of their Historical Exposures (석면방직업 근로자의 석면노출 실태와 과거농도 추정에 관한 연구)

  • Park, Jeong Im;Yoon, Chung Sik;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.16-39
    • /
    • 1995
  • From July 8 to September 2 1994, asbestos exposure level among asbestos textile workers was surveyed. Six plants out of plants in Korea were selected for this study. In addition to the exposure level, the relationship between the level of exposure and some factors affecting exposure were studied. Also, using historical data of asbestos concentrations in asbestos textile plants plus current data, trend of asbestos exposure level could be introduced. Historical exposure level was estimated on the basis of these data. The main results of this study are follows. 1. Average concentration of all six plants surveyed was 1.54 f/cc, and range of those concentrations was 0.03 - 11.58 f/cc. The minimum average concentration was 0.32 f/cc and the maximum was 8.04 f/cc which is four times higher than the Korean standard. A wide difference of exposure level among the workers of different plants was observed. In three plants, the half of all the plants surveyed, their average concentrations exceeded the Korean standard, and those in all the plants exceeded the ACGIH TLV. 2. Among total 56 samples, 22 samples(39%) were in excess of the Korean standard, and 53 samples(95%) were above the ACGIH TLV. Among 32 personal samples, 15 samples(47%) exceeded the Korean standard, and 30 samples(94%) exceeded the ACGIH TLV. Among 24 area samples excluding a few samples collected in office area, seven samples exceeded the Korean standard, and 23 samples( 96%) exceeded the ACGIH TLV. 3. Distributions of concentrations were observed by processes. In weaving, the highest, average concentration was 4.29 f/cc, and range was 2.61 - 11.58 f/cc. In spinning, average concentration was 2.22 f/cc, and range was 0.41 - 8.93 f/cc. In carding, average concentration was 1.98 f/cc, and range was 0.23 - 10.93 f/cc, In twisting, average concentration was 1.65 f/cc, and range was 0.21 - 9.83 f/cc. In mixing, the lowest, average concentration was 0.48 f/cc, and range was 0.22 - 1.20 f/cc. 4. All the samples from basic processes of asbestos textile plants were above the ACGIH TLV. Nineteen samples(45%) out of all these 42 samples exceeded Korean standard. Fourteen samples(58%) of total 24 personal samples, and five samples(28%) of total 18 area samples exceeded the Korean standard. Considering processes, all the samples in weaving process exceeded the Korean standard and 50 did 54% of those in spinning, 40% in carding, and 27% in twisting. 5. Trend of decreasing asbestos concentrations in asbestos textile plants was observed by time. 6. Asbestos concentrations in asbestos textile plant in 1975 were estimated to be 11.0 - 92.4 f/cc.

  • PDF

Spatial Analysis Methods for Asbestos Exposure Research (석면노출연구를 위한 공간분석기법)

  • Kim, Ju-Young;Kang, Dong-Mug
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.369-379
    • /
    • 2012
  • Objectives: Spatial analysis is useful for understanding complicated causal relationships. This paper focuses trends and appling methods for spatial analysis associated with environmental asbestos exposure. Methods: Literature review and reflection of experience of authors were conducted to know academic background of spatial analysis, appling methods on epidemiology and asbestos exposure. Results: Spatial analysis based on spatial autocorrelation provides a variety of methods through which to conduct mapping, cluster analysis, diffusion, interpolation, and identification. Cause of disease occurrence can be investigated through spatial analysis. Appropriate methods can be applied according to contagiousness and continuity. Spatial analysis for asbestos exposure source is needed to study asbestos related diseases. Although a great amount of research has used spatial analysis to study exposure assessment and distribution of disease occurrence, these studies tend to focus on the construction of a thematic map without different forms of analysis. Recently, spatial analysis has been advanced by merging with web tools, mobile computing, statistical packages, social network analysis, and big data. Conclusions: Because the trend in spatial analysis has evolved from simple marking into a variety of forms of analyses, environmental researchers including asbestos exposure study are required to be aware of recent trends.