• Title/Summary/Keyword: 서포트벡터머신

Search Result 268, Processing Time 0.034 seconds

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle (주급수 유량의 형상 분류 및 추정 모델에 대한 연구)

  • Yang, Hac Jin;Kim, Seong Kun;Choi, Kwang Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.

Fault Severity Diagnosis of Ball Bearing by Support Vector Machine (서포트 벡터 머신을 이용한 볼 베어링의 결함 정도 진단)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Dae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.551-558
    • /
    • 2013
  • A support vector machine (SVM) is a very powerful classification algorithm when a set of training data, each marked as belonging to one of several categories, is given. Therefore, SVM techniques have been used as one of the diagnostic tools in machine learning as well as in pattern recognition. In this paper, we present the results of classifying ball bearing fault types and severities using SVM with an optimized feature set based on the minimum distance rule. A feature set as an input for SVM includes twelve time-domain and nine frequency-domain features that are extracted from the measured vibration signals and their decomposed details and approximations with discrete wavelet transform. The vibration signals were obtained from a test rig to simulate various bearing fault conditions.

Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine (서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측)

  • Yang, Hac-Jin;Shin, Hyun-Chan;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • We developed a prediction model of assistance force for the opening/closing of an automobile door depending on the condition of the parking ground. The candidates of the learning models for the operating assistance force were compared to determine the proper force according to the slope and user's force, etc. The reduced experimental model was developed to obtain learning data for the estimation model. The learning algorithm was composed to predict the assistance force to incorporate real assistance force data. Among these algorithms, an Artificial Neural Network (ANN) and Support Vector Machine(SVM) were applied and the adaptability was compared between these models. The SVM provided more adaptability for the learning process of the door assistance force prediction. This paper proposes a system for determining the assistance force to control a door motor to compensate for the deviation of required door force in the slope condition, as needed in the plane condition.

Energy Theft Detection Based on Feature Selection Methods and SVM (특징 선택과 서포트 벡터 머신을 활용한 에너지 절도 검출)

  • Lee, Jiyoung;Sun, Young-Ghyu;Lee, Seongwoo;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.119-125
    • /
    • 2021
  • As the electricity grid systems has been intelligent with the development of ICT technology, power consumption information of users connected to the grid is available to acquired and analyzed for the power utilities. In this paper, the energy theft problem is solved by feature selection methods, which is emerging as the main cause of economic loss in smart grid. The data preprocessing steps of the proposed system consists of five steps. In the feature selection step, features are selected using analysis of variance and mutual information (MI) based method, which are filtering-based feature selection methods. According to the simulation results, the performance of support vector machine classifier is higher than the case of using all the input features of the input data for the case of the MI based feature selection method.

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.

Video Summarization Using Importance-based Fuzzy One-Class Support Vector Machine (중요도 기반 퍼지 원 클래스 서포트 벡터 머신을 이용한 비디오 요약 기술)

  • Kim, Ki-Joo;Choi, Young-Sik
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.87-100
    • /
    • 2011
  • In this paper, we address a video summarization task as generating both visually salient and semantically important video segments. In order to find salient data points, one can use the OC-SVM (One-class Support Vector Machine), which is well known for novelty detection problems. It is, however, hard to incorporate into the OC-SVM process the importance measure of data points, which is crucial for video summarization. In order to integrate the importance of each point in the OC-SVM process, we propose a fuzzy version of OC-SVM. The Importance-based Fuzzy OC-SVM weights data points according to the importance measure of the video segments and then estimates the support of a distribution of the weighted feature vectors. The estimated support vectors form the descriptive segments that best delineate the underlying video content in terms of the importance and salience of video segments. We demonstrate the performance of our algorithm on several synthesized data sets and different types of videos in order to show the efficacy of the proposed algorithm. Experimental results showed that our approach outperformed the well known traditional method.

Development of a Fault Diagnosis System for Circulating Fluidized Bed Boiler Tube (순환유동층 보일러 튜브 결함 진단을 위한 진단장치 개발)

  • Kim, Yu-Hyun;Jeong, In-Kyu;Ban, Jae-Kyo;Kim, JaeYoung;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.53-54
    • /
    • 2018
  • 최근 화력 발전소 보일러 튜브의 노후화로 인해서 불시정지 빈도수 및 재가동 시간이 늦춰지고 있다. 이는 막대한 경제적, 사회적 손실로 이어지며, 이를 예방하기 위해서는 상태기반 정비가 필요하다. 현재의 상태기반 정비는 센서, 신호 수집장치, 신호 분석단계를 거쳐 전문가가 진단하기 때문에 즉각적으로 대응하기 어려운 문제점이 있어서 설비의 재가동 시간이 늦춰지고 있다. 따라서 본 논문에서는 전문가의 도움 없이 자동으로 상태를 진단하기 위해서 머신러닝 기법 중 하나인 서포트 벡터 머신(SVM)을 이용한 진단 알고리즘을 구현하고, 이를 탑재한 진단장치를 개발하여 비전문가들도 즉각적으로 대응할 수 있게 하여 불시정지 시간과 빈도수를 줄이고자 한다.

  • PDF

The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection (감성판별을 위한 생체신호기반 특징선택 분류기 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.206-216
    • /
    • 2013
  • The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.

Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication (얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신)

  • Kim, Sang-Hoon;Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • Face membership authentication is to decide whether an incoming person is an enrolled member or not using face recognition, and basically belongs to two-class classification where support vector machine (SVM) has been successfully applied. The previous SVMs used for face membership authentication have been trained and tested using image feature vectors extracted from member face images of each class (enrolled class and unenrolled class). The SVM so trained using image feature vectors extracted from members in the training set may not achieve robust performance in the testing environments where configuration and size of each class can change dynamically due to member's joining or withdrawal as well as where testing face images have different illumination, pose, or facial expression from those in the training set. In this paper, we propose an effective class discriminating feature vector-based SVM for robust face membership authentication. The adopted features for training and testing the proposed SVM are chosen so as to reflect the capability of discriminating well between the enrolled class and the unenrolled class. Thus, the proposed SVM trained by the adopted class discriminating feature vectors is less affected by the change in membership and variations in illumination, pose, and facial expression of face images. Through experiments, it is shown that the face membership authentication method based on the proposed SVM performs better than the conventional SVM-based authentication methods and is relatively robust to the change in the enrolled class configuration.

Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning (머신러닝을 사용한 탄성파 자료 보간법 기술 연구 동향 분석)

  • Bae, Wooram;Kwon, Yeji;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.192-207
    • /
    • 2020
  • We acquire seismic data with regularly or irregularly missing traces, due to economic, environmental, and mechanical problems. Since these missing data adversely affect the results of seismic data processing and analysis, we need to reconstruct the missing data before subsequent processing. However, there are economic and temporal burdens to conducting further exploration and reconstructing missing parts. Many researchers have been studying interpolation methods to accurately reconstruct missing data. Recently, various machine learning technologies such as support vector regression, autoencoder, U-Net, ResNet, and generative adversarial network (GAN) have been applied in seismic data interpolation. In this study, by reviewing these studies, we found that not only neural network models, but also support vector regression models that have relatively simple structures can interpolate missing parts of seismic data effectively. We expect that future research can improve the interpolation performance of these machine learning models by using open-source field data, data augmentation, transfer learning, and regularization based on conventional interpolation technologies.