• Title/Summary/Keyword: 서열정렬

Search Result 105, Processing Time 0.025 seconds

Characterization of 18S rDNA in Polygonatum spp. Collections (둥굴레속 식물의 18S rDNA 염기서열의 특성)

  • Yun, Jong-Sun;Kim, Ik-Hwan;Park, Jae-Seong;Lee, Cheol-Hee;Hong, Eui-Yon;Yun, Tae;Jong, Seung-Keun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.178-182
    • /
    • 2006
  • This study was conducted to investigate the variation in sequence, the base composition and the sequence similarity of 18S rDNA (18S ribosomal RNA coding region) in the 10 Polygonatum spp. collections. The entire 18S rDNA region of 10 Polygonatum spp. collections ranged from 913 bp to 914 bp. There were 8 variable sites in the entire 18S region, and they were attributable to nucleotide substitution and deletion. $T{\rightarrow}C$ transition happened in 4 sites, and $A{\rightarrow}G$ transition happened in 1 site. $C{\rightarrow}A$ transversion happened in 1 site, and deletion happened in 2 sites. Transition rates were five times that of transversion. Base compositions of 18S rDNA were $23.09{\sim}23.33%$ in adenine, $23.33{\sim}23.52%$ in guanine, $25.60{\sim}25.85%$ in thymine and $27.38{\sim}27.79%$ in cytosine. The A + T content of 18S rDNA of 10 Polygonatum spp. collections averages 48.99%, ranging from 48.80% to 49.18%, and the G + C content averages 51.01%, ranging from 50.82% to 51.20%. Pairwise sequence comparisons indicated that 18S rDNA sequence similarity ranged from 99.7% to 100%.

A Study on the Genomic Patterns of SARS coronavirus using Bioinformtaics Techniques (바이오인포매틱스 기법을 활용한 SARS 코로나바이러스의 유전정보 연구)

  • Ahn, Insung;Jeong, Byeong-Jin;Son, Hyeon S.
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.522-526
    • /
    • 2007
  • Since newly emerged disease, the Severe Acute Respiratory Syndrome (SARS), spread from Asia to North America and Europe rapidly in 2003, many researchers have tried to determine where the virus came from. In the phylogenetic point of view, SARS virus has been known to be one of the genus Coronavirus, but, the overall conservation of SARS virus sequence was not highly similar to that of known coronaviruses. The natural reservoirs of SARS-CoV are not clearly determined, yet. In the present study, the genomic sequences of SARS-CoV were analyzed by bioinformatics techniques such as multiple sequence alignment and phylogenetic analysis methods as well multivariate statistical analysis. All the calculating processes, including calculations of the relative synonymous codon usage (RSCU) and other genomic parameters using 30,305 coding sequences from the two genera, Coronavirus, and Lentivirus, and one family, Orthomyxoviridae, were performed on SMP cluster in KISTI, Supercomputing Center. As a result, SARS_CoV showed very similar RSCU patterns with feline coronavirus on the both axes of the correspondence analysis, and this result showed more agreeable results with serological results for SARS_CoV than that of phylogenetic result itself. In addition, SARS_CoV, human immunodeficiency virus, and influenza A virus commonly showed the very low RSCU differences among each synonymous codon group, and this low RSCU bias might provide some advantages for them to be transmitted from other species into human beings more successfully. Large-scale genomic analysis using bioinformatics techniques may be useful in genetic epidemiology field effectively.

  • PDF

Taxonomic status of Goodyera rosulacea (Orchidaceae): molecular evidence based on ITS and trnL sequences (로젯사철란(Goodyera rosulacea: Orchidaceae)의 분류학적 위치: ITS와 trnL 염기서열에 의한 분자적 증거)

  • Lee, Chang Shook;Eom, Sang Mi;Lee, Nam Sook
    • Korean Journal of Plant Taxonomy
    • /
    • v.36 no.3
    • /
    • pp.189-207
    • /
    • 2006
  • Goodyera rosulacea, which is morphologically similar to G. repens, is described recently as a new species based on its distinct morphological characters such as rosette-formed leaves, short rhizome and habitat. To verify the taxonomic identity of G. rosulacea and its taxonomic relationship within Korean Goodyera taxa, sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA and the trnL region of cpDNA from 24 accessions including 1 outgroup accession were analyzed. Aligned sequences were analyzed using maximum parsimony and distance method, and the taxonomic identity and the taxonomic relationships among the related taxa were estimated by the existence of private marker gene and the phylogenetic tree of the aligned sequences. Molecular data indicate that G. rosulacea gas several private marker genes and shows monophyly in phylogenetic trees of both ITS and trnL sequences. the pairwise distance between G. rosulacea and the orher taxa of Korean Goodyera was 3.49-6.68% for ITS region and 5.05-9.53% for trnL region, indicating that G. rosulacea could be treated as an independent species. Therefore, our molecular data support the taxonomic of G. rosulacea as a distinct species of Korea. In phylogenetic trees, G. rosulacea formed same clade with G. repens, which has similar morphological characters with G. rosulacea, and showed the lowest pairwise distance with G. repens among Korean Goodyera taxa. These molecular data sugguested that G. rosulacea and G. repens are closely related taxa.

Rapid Determining for Subtypes and Pandemic Type of Swine Influenza Virus by Diagnostic One-step RT-PCR (진단용 one-step RT-PCR을 통한 돼지 인플루엔자 바이러스의 아형 및 pandemic 유형에 대 한 신속한 결정)

  • Kim, Gwang Il;Kim, Jee In;Kwon, Jin-Hyeap;Min, Yoo Hong;Kang, Joo Il;Lee, Chang-Ho;Kim, Sung-Hee;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.555-562
    • /
    • 2018
  • Swine influenza virus (SIV) causes one of the most common diseases of the pig population, and its subtypes are determined by hemagglutinin (HA) and neuraminidase (NA). Recently, the SIV subtype diagnosis has been developed. The method using antigen-antibody reaction rather than PCR was mainly used because of the large change in the ribonucleotide sequences of SIV. Here, we have developed 10 diagnostic primer sets through multi-nucleotide sequences alignment of spreaded SIV since 2008 in Korea and then optimized the reaction of the one-step RT-PCR for rapid determination of SIV subtype. In addition, specific primers were designed to early determine the pandemic SIV by detecting unique M sequences proven in highly infectious and virulent subtypes of the influenza H1N1 (pH1N1). Here, some of the SIVs spread in Korea from 2008 to 2014 have been tested to determine the subtypes and pandemic potential of SIV. All diagnostic primer sets were found to be able to accurately determine the SIV subtype and to detect the pandemic SIV. In conclusion, it was confirmed that the optimized one-step RT-PCR analysis using these primer sets is useful for rapid diagnosis of SIV subtypes. These results can be used for development of SIV subtype diagnostic kit to early detect before virulent SIV spreads do.

Effects of Mutation at Two Conserved Aspartate Residues and a Serine Residue on Functions of Yeast TSA 1 (Saccharomyces cerevisiae TSA1의 보존된 아스파트산 잔기 및 세린 잔기의 변이가 과산화효소 활성 및 샤페론 활성에 미치는 영향)

  • Lee, Songmi;Cho, Eun Yi;Kim, Kanghwa
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Alignment of 967 reference sequences of the typical 2-Cys peroxiredoxin family of proteins revealed that 10 amino acids were conserved, with over 99% identity. To investigate whether the conserved aspartic acid residues and serine residue affect the peroxidase and chaperone activity of the protein, we prepared yeast TSA1 mutant proteins in which aspartic acids at positions 75 and 103 were replaced by valine or asparagine, and serine at position 73 was replaced by alanine. By non-reducing SDS-PAGE, TSA1 and the S73A, D75V and D75N mutants were detected in dimeric form, whereas the D103V and D103N mutants were detected in various forms, ranging from high molecular-weight to monomeric. Compared with wild type TSA1, the D75N mutant exhibited 50% thioredoxin peroxidase activity, and the S73A and D75V mutants showed 25% activity. However, the D103V and D103N mutants showed no peroxidase activity. All proteins, except for the D103V and D103N mutants, exhibited chaperone activity at $43^{\circ}C$. Our results suggest that the two conserved aspartic acid residues and serine residue of TSA1 play important roles in its thioredoxin peroxidase activity, and D103 plays a critical role in its chaperone activity.

Phylogeny of Korean Viola based on ITS sequences (ITS 염기서열에 의한 한국산 제비꽃속(Viola)의 계통 유연관계)

  • Yoo, Ki-Oug;Jang, Su-Kil;Lee, Woo-Tchul
    • Korean Journal of Plant Taxonomy
    • /
    • v.35 no.1
    • /
    • pp.7-23
    • /
    • 2005
  • Molecular phylogenetic studies were conducted to evaluate interspecific relationships in 40 populations of Viola including 35 Korean taxa, four Japanese populations and one outgroup using nuclear ribosomal ITS sequences. The phylogenetic analyses were conducted using parsimony and neighbor-joining methods. Subsection Trigonocarpae of section Nomimium appeared as the most basal clade within the Korean Viola. Section Dischidium and Chamaemelanium was monophyletidbootstrap 100%) and placed between subsect. Trigonocarpae and three other subsections of sect. Nomimium. Sect. Nomimium was paraphyletic. Although each subsectional grouping was in accordance with previous infrageneric classification based on morphological characters, yet discordance remained at the series level. Two evolutionary trends observed in the ITS tree were as follows. First, subsect. Trigonocarpae(x=10) was derived from the outgroup(x=6); Second, subsects. Bilobatae and Vaginatae(x=10 or 12), and subsect. Patellares(x=12) of sect. Nomimium were originated from sects. Dischidium and Chamaemelanium(x=6). Viola albida complex including three very closely related taxa was recognized as independent group within subsect. Patellares in parsimony tree. This result suggested that they should be treated as a taxa in series Pinnatae. Phylogenetic position of a putative hybrid species, Viola woosanensis was not supported with previous morphological hypothesis.

A Java Birthmark based on Control Flow Graph Matching (제어 흐름 그래프 매칭 기반 자바 버스마크)

  • Park, Hee-Wan;Lim, Hyun-Il;Choi, Seok-Woo;Han, Tai-Sook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.871-875
    • /
    • 2009
  • A software birthmark is inherent characteristics that can be used to identify a program. In this paper, we propose a new Java birthmark based on control flow graph (CFG) matching. The CFG matching consists of node matching and edge matching. To get similarities of nodes and edges of two CFGs, we apply a sequence alignment algorithm and a shortest path algorithm, respectively. To evaluate the proposed birthmark, we perform experiments on Java programs that implement various algorithms. In the experiments, the proposed birthmark shows not only high credibility and resilience but also fast runtime performance.

De novo assembly of a large volume of genome using NGS data (NGS 데이터를 이용한 대용량 게놈의 디노버 어셈블리)

  • Won, Jung-Im;Hong, Sang-Kyoon;Kong, Jin-Hwa;Huh, Sun;Yoon, Jee-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.25-27
    • /
    • 2012
  • 디노버 어셈블리는 레퍼런스 시퀀스 없이 리드의 염기 서열 정보를 이용하여 원래의 전체 시퀀스(original sequence)로 추정되는 시퀀스로 리드들을 재구성하는 방식이다. 최근의 NGS(Next Generation Sequencing) 기술은 대용량 리드를 훨씬 쉽게 저비용으로 생성할 수 있다는 장점이 있어, 이를 이용한 많은 연구가 이루어지고 있다. 그러나 NGS 리드 데이터를 이용한 디노버 어셈블리에 관한 연구는 국내외적으로 매우 미흡한 실정이다. 그 이유는 NGS 리드 데이터를 이용하여 디노버 어셈블리를 수행하는 경우 대용량 데이터, 복잡한 데이터 구조 및 처리 과정 등으로 인하여 매우 많은 시간과 공간이 소요될 뿐만 아니라 아직까지 다양한 분석 툴과 노하우 등이 충분히 개발되어 있지 않기 때문이다. 본 연구에서는 NGS 리드 데이터를 이용한 어셈블리의 실효성과 정확성을 검증한다. 또한 디노버 어셈블리의 처리 시간 및 공간 오버헤드를 해결하기 위하여 유사 종과의 리드 정렬을 활용하는 방안을 제안한다.

Cloning, cSNP Identification, and Genotyping of Pig Complement Factor B(CFB) Gene Located on the SLA Class III Region (SLA Class III 영역의 돼지 Complement Factor B(CFB) 유전자의 Cloning, cSNP 동정 및 유전자형 분석)

  • Kim, Jae-Hwan;Lim, Hyun-Tae;Seo, Bo-Yeong;Zhong, Tao;Yoo, Chae-Kyoung;Jung, Eun-Ji;Jeon, Jin-Tae
    • Journal of Animal Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.753-762
    • /
    • 2008
  • The primers for RT-PCR and RACE-PCR were designed by aligning the pig genomic sequence and the human complement factor B(CFB) coding sequence(CDS) from the GenBank. Each PCR product was amplified in pig cDNA and sequencing was carried out. The CDS length of pig CFB gene was determined to be 2298 bp. In addition, the pig CDS was more longer than human and mouse orthologs because of insertion and deletion. The identities of porcine nucleotide sequences with those of human and mice were 84% and 80%, and the identities of amino acids were 79% to 77%, respectively. Three complement control protein(CCP) domains, one Von Willebrand factor A(VWFA) domain and a serine protease domain, that are revealed typically in mammals, were found in the pig CFB gene. Based on the CDSs determined, the primers were designed in intron regions for amplification of entire length of exons. In amplification and direct sequencing with genomic DNAs of six pig breeds, three cSNPs(coding single nucleotide polymorphisms) were identified and verified as missense mutations. Using the Multiplex-ARMS method, we genotyped and verified the mutations identified from direct sequencing. To demonstrate recrudescence, we performed both direct sequencing and Multiplex-ARMS with two randomly selected DNA samples. The genotype of each sample exhibited the same results using both methods. Therefore, three cSNPs were identified from pig CFB gene and that can be used for haplotype analysis of the swine leukocyte antigen(SLA) class III region. Moreover, the results indicate that the Multiplex-ARMS method should be powerful for genotyping of genes in the SLA region.

A Phylogenetic Study of Korean Carpesium L. Based on nrDNA ITS Sequences (ITS 염기서열에 의한 한국산 담배풀속(Carpesium L.)의 계통분류학적 연구)

  • Yoo, Kwang-Pil;Park, Seon-Joo
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.96-104
    • /
    • 2012
  • Phylogenetic analyses were conducted to evaluate relationships of 7 taxa of Korean Carpesium including three outgroup (Inula britannica L., Inula germanica L., Rhanteriopsis lannginosa (DC.) Rauschert) by using ITS (internal transcribed spacer) sequences of nuclear ribosomal DNA. Phylogenetic studies used maximum parsimony, neighbor-joining and maximum likelihood methods analysis. The length of the ITS sequences was 731 bp, and the lengths of the ITS1, ITS2 and 5.8S regions were 284~297 bp, 264~266 bp and 164 bp, respectively. The total number of variable sites was 111 for the entire sequences, and a parsimony informative sites of 64 are valid. Base change appeared variously in ITS1 rather than in ITS2. As the result, Korean Carpesium were formed monophyletic group and C. abrotanoides situated as the most basal clade. The results show that C. macrocephalum is closely related with C. triste. C. rosulatum has the closest relationship with C. glossophyllum. C. cernuum is close to C. divaricatum. These results suggest that the ITS data used in this study could be useful for the phylogenetic analysis of Korean Carpesium.