• Title/Summary/Keyword: 서식지 분포 변화

Search Result 154, Processing Time 0.023 seconds

Predicting the suitable habitat distribution of Conyza sumatrensis under RCP scenarios (RCPs 기후변화 시나리오에 따른 큰망초(Conyza sumatrensis)의 적합 서식지 분포 예측)

  • Myung-Hyun Kim;Soon-Kun Choi;Jaepil Cho;Min-Kyeong Kim;Jinu Eo;So-Jin Yeob;Jeong Hwan Bang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Global warming has a major impact on the Earth's precipitation and temperature fluctuations, and significantly affects the habitats and biodiversity of many species. Although the number of alien plants newly introduced in South Korea has recently increased due to the increasing frequency of international exchanges and climate change, studies on how climate change affects the distribution of these alien plants are lacking. This study predicts changes in the distribution of suitable habitats according to RCPs climate change scenarios using the current distribution of the invasive alien plant Conyza sumatrensis and bioclimatic variables. C. sumatrensis has a limited distribution in the southern part of South Korea. Isothermality (bio03), the max temperature of the warmest month (bio05), and the mean temperature of the driest quarter (bio09) were found to influence the distribution of C. sumatrensis. In the future, the suitable habitat for C. sumatrensis is projected to increase under RCP 4.5 and RCP 8.5 climate change scenarios. Changes in the distribution of alien plants can have a significant impact on the survival of native plants and cause ecosystem disturbance. Therefore, studies on changing distribution of invasive species according to climate change scenarios can provide useful information required to plan conservation strategies and restoration plans for various ecosystems.

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Distribution Aspect and Seasonal Distribution Change of the Wintering Geese in Cheonsu Bay (천수만에 도래하는 기러기류의 분포양상과 시기에 따른 분포의 변화)

  • Yoo, Seung-Hwa;Kim, Jun-Beom;Kim, In-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.632-639
    • /
    • 2008
  • This paper deals with feeding site distribution aspect and seasonal distribution change of the wintering geese in Cheonsu bay and reclaimed area from October 2006 to March 2007. Geese were distributed mostly in agricultural land(rice field) during day time. According to the distribution map by maximum counts, observed geese of agricultural land were frequently distributed in large agricultural land. Especially, Geese were more used agricultural land near the reservoir where used as roosting site than the other sites. Diurnal feeding site of the geese were agricultural land near the reservoir with huge flock during early wintering season(October), but geese were used the agricultural land far from reservoir after mid wintering season(after January). The feeding flock size of Geese were decreased and feeding site was more far from the reservoir than in mid wintering season during late wintering season(March). Habitat use rate of the quadrat area where below 1km from the reservoir was most high in early wintering season. Contrary, habitat use rate where 2km far from the reservoir was shown lowest habitat use rate in early wintering season, but it was increased during mid wintering season(January) and decreased after mid wintering season. Habitat use rate of the agricultural land where 2km below and 1 km far from reservoir was shown middle rate, but it was increased until November and decreased after November. This result shown that feeding site preference of the wintering geese was affected by distance from roosting site(reservoir), and feeding site was changed as a food sources decreasing by stay time of geese flock.

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.

A Study on the Habitat Mapping of Meretrix lyrata Using Remote Sensing at Ben-tre Tidal Flat, Vietnam (원격탐사를 활용한 베트남 Ben-tre 갯벌의 Meretrix lyrata 서식지 매핑 연구)

  • Hwang, Deuk Jae;Woo, Han Jun;Koo, Bon Joo;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.975-987
    • /
    • 2021
  • Potential habitat mapping of Meretrix lyrata which is found in large parts of South East Asian tidal flat was carried out to find out causes of collective death. Frequency Ratio (FR) method, one of geospatialstatistical method, was employed with some benthic environmental factors; Digital elevation model (DEM) made from Landsat imagery, slope, tidal channel distance, tidal channel density, sedimentary facesfrom WorldView-02 image. Field survey was carried out to measure elevation of each station and to collect surface sediment and benthos samples. Potential habitat maps of the all clams and the juvenile clams were made and accuracy of each map showed a good performance, 76.82 % and 69.51 %. Both adult and juvenile clams prefer sand dominant tidal flat. But suitable elevation of adult clams is ranged from -0.2 to 0.2 m, and that of juvenile clams is ranged from 0 to 0.3 m. Tidal channel didn't affect the habitat of juvenile clams, but it affected the adult clams. In the furtherstudy, comparison with case of Korean tidal flat will be carried out to improve a performance of the potential habitat map. Change in the benthic echo-system caused by climate change will be predictable through potential habitat mapping of macro benthos.

Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios (SSPs 시나리오에 따른 미국쥐손이 적합 서식지 분포 예측)

  • Oh, Young-Ju;Kim, Myung-Hyun;Choi, Soon-Kun;Kim, Min-Kyeong;Eo, Jinu;Yeob, So-Jin;Bang, Jeong Hwan;Lee, Yong Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.154-163
    • /
    • 2021
  • This study was carried out to identify the factors affecting the distribution of suitable habitats for Geranium carolinianum, which was naturalized in South Korea, and to predict the changes of distribution in the future. We collected occurrence data of G. carolinianum at 68 sites in South Korea, and applied the MaxEnt model under climate change scenarios (SSP2-4.5, and SSP5-8.5). Precipitation seasonality (bio15), mean temperature of warmest quarter (bio10), and mean temperature of driest quarter (bio09) had high contribution for potential distribution of G. carolinianum. According to climate change scenarios, high suitable habitats of G. carolinianum occupied 6.43% of the land of South Korea in historical period (1981~2010), and 92.60% under SSP2-4.5, and 98.36% undr SSP5-8.5 in far future (2071~2100).

Development of a K-GEOSS Pilot Service for Sharing and Utilizing Global Earth Observation Data (지구관측데이터 공동활용을 위한 K-GEOSS 시범서비스 개발)

  • Jeong, Chang-Hoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.360-361
    • /
    • 2018
  • 지구관측데이터 공동활용체계로 GEOSS가 제안되면서 한국에서도 K-GEOSS 개발을 통하여 다양한 방식으로 지구관측데이터의 활용 확산에 참여하고 있다. 본 연구에서는 K-GEOSS 시범서비스로 환경 분야의 생물 종 분포 변화 예측 시나리오를 개발하여 미래 생물 종의 서식지 보호를 위한 지구관측데이터의 효과적 사용 사례를 보여준다. 이러한 시범서비스는 K-DMSS 플랫폼을 이용하여 개발하였으며, 데이터 수집 전처리, 모델 학습 평가, 실제 분포 변화 예측까지 모두 자동화하여 수행한다. 최종단에서 다양한 기후모델 및 기후변화 시나리오에 따른 여러 종류의 예측 결과를 제공함으로써 대체 서식지 보호 및 정책수립을 위한 종합적인 의사결정에 도움을 주도록 하였다. 이와 같은 다양한 종류의 시범서비스 개발 및 지구관측데이터의 공동활용 사례 발굴을 통하여 GEOSS 체계의 정착을 보다 앞당길 수 있다.

A Suitability Selection for Marine Afforestation Using Habitat Evaluation Procedure (서식지 평가 방법을 이용한 바다숲 조성 해역의 적지 선정)

  • Oh, Tae-Geon;Kim, Yi-Cheong;Yang, Yong-Su;Kim, Chang-Gil;Lee, Moon-Ock
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.894-905
    • /
    • 2010
  • A habitat evaluation method was used to estimate the optimum suitability of the study area for the target algae. Habitat evaluation was carried out using an habitat evaluation procedure (HEP) so that the optimum suitability was quantitatively estimated for carrying out marine afforestation in the study area. According to the results of the suitability analysis, the variation of light and wave conditions according to depth showed the factors with the largest impact to involve the spatial distribution of suitable locations within the area. The total suitable area selected was calculated to be 18ha. The quality of the target algae (Ecklonia cava Kjellman) habitat was analyzed using an habitat suitability index (HSI) model of the HEP, which showed 0.55-0.907 (the maximum value being 1.0). This indicated that artificial reefs for afforestation should be installed to zonation type because the suitable area selected (The HSI value was 0.55~0.907) was distributed within the same depth line.

Potential Habitat Area Based on Natural Environment Survey Time Series Data for Conservation of Otter (Lutra lutra) - Case Study for Gangwon-do - (수달의 보전을 위한 전국자연환경조사 시계열 자료 기반 잠재 서식적합지역 분석 - 강원도를 대상으로 -)

  • Kim, Ho Gul;Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.24-36
    • /
    • 2021
  • Countries around the world, including the Republic of Korea, are participating in efforts to preserve biodiversity. Concerning species, in particular, studies that aim to find potential habitats and establish conservation plans by conducting habitat suitability analysis for specific species are actively ongoing. However, few studies on mid- to long-term changes in suitable habitat areas are based on accumulated information. Therefore, this study aimed to analyze the time-series changes in the habitat suitable area and examine the otters' changing pattern (Lutra lutra) designated as Level 1 endangered wildlife in Gangwon-do. The time-series change analysis used the data on otter species' presence points from the 2nd, 3rd, and 4th national natural environment surveys conducted for about 20 years. Moreover, it utilized the land cover map consistent with the survey period to create environmental variables to reflect each survey period's habitat environment. The suitable habitat area analysis used the MaxEnt model that can run based only on the species presence information, and it has been proven to be reliable by previous studies. The study derived the habitat suitability map for otters in each survey period, and it showed a tendency that habitats were distributed around rivers. Comparing the response curves of the environmental variables derived from the modeling identified the characteristics of the habitat favored by otters. The examination of habitats' change by survey period showed that the habitats based on the 2nd National Natural Environment Survey had the widest distribution. The habitats of the 3rd and 4th surveys showed a tendency of decrease in area. Moreover, the study aggregated the analysis results of the three survey periods and analyzed and categorized the habitat's changing pattern. The type of change proposed different conservation plans, such as field surveys, monitoring, protected area establishment, and restoration plan. This study is significant because it produced a comprehensive analysis map that showed the time-series changes of the location and area of the otter habitat and proposed a conservation plan that is necessary according to the type of habitat change by region. We believe that the method proposed in this study and its results can be used as reference data for establishing a habitat conservation and management plan in the future.

Pattern of Change of the Local Butterfly Community in a Rural Area of Southwestern Part of Korea (전남 서남부 농촌지역에 분포하는 나비군집의 변화 양상에 관한 연구)

  • Choi, Sei-Woong;An, Jeong-Seop
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • We surveyed butterfly community in a rural area of the southwestern part of Korea to investigate the changes of species composition and their abundances between 2001~2002 and 2014. The butterfly survey was conducted at the same site using a line transect method. There was a significant decrease of the numbers of species and individuals between 2001~2002 and 2014. We categorized each species based on six ecological traits: habitat type, habitat breadth, food plant type, food plant breadth, number of generation per year and overwintering stage. The comparison of number of species using these ecological traits showed no difference during the 10-yr time intervals. However, the comparison of number of individuals for the ecological traits showed the significant differences except for one trait, overwintering stage. We could suspect that the decrease of butterflies in the study area was resulted from the habitat change. To investigate the causal factors and the changes of butterfly fauna, we need a long-term monitoring of the local butterfly community.