• Title/Summary/Keyword: 서비스 추천

Search Result 1,115, Processing Time 0.036 seconds

Design and Implementation of mobile wine recommendation system (모바일 와인 추천 시스템 설계 및 구현)

  • Sung, Nak-Jun;Lee, Ki-Beak;Park, Doo-Soon;Hong, Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1073-1076
    • /
    • 2014
  • 최근 추천 서비스 시스템의 높은 서비스 만족도와 스마트 디바이스들의 빠른 발전과 높은 보급률로 인해 모바일 환경에서의 추천시스템들이 높은 필요성이 증대되고 있다. 이러한 추천 시스템들 중에서도 개인의 성향을 바탕으로 서비스를 제공하는 추천 시스템들이 큰 인기를 얻고 있는 추세이다. 추천 서비스 중에서도 꾸준하게 국내에서 소비량과 관심이 증가하고 있는 와인에 대한 서비스를 제공하고자한다. 국내 와인 소비량이 10년 만에 약 84%가 증가함을 통해 소비자들의 와인에 대한 관심이 꾸준하게 증가하고 있는 점을 알 수 있다. 이를 바탕으로 본 논문에서는 개인의 성향을 바탕으로 선호하는 와인을 추천해주는 서비스 시스템을 제안 및 구현하고, 해당 시스템을 모바일 디바이스를 통해 제공해주는 어플리케이션을 설계 몇 구현하였다.

A Consumer Perception based on the Type of Recommender System : A Privacy Calculus Perspective (상품 추천 서비스 유형에 따른 소비자 반응 연구 : 프라이버시 계산 모델을 중심으로)

  • Choi, Hye-Jin;Cho, Chang-Hoan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.254-266
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the type of recommender system on consumer's perceived benefit and privacy risk. The result showed that the perceived usefulness and intension to click was high in the order of Hybrid-filtering, Bestseller, and SNS-based system. Privacy concern was high in order of SNS-based system, Hybrid-filtering, and Bestseller. Moderating effects of perceived personalization on the type of recommender system and perceived usefulness were significant. Finally perceived usefulness had positive effect, and privacy concern had negative effect on consumer's intension to click. This study has significant implications for digital marketing bt comparing consumer responses according to the type of recommended service. The result of this study can be helpful for providing and developing future recommender service.

A Recommendation Algorithm for the Personalized Service Based on User Location in Ubiquitous Environments (유비쿼터스 환경에서 사용자 위치 기반의 개인화된 서비스 추천 알고리즘)

  • Choi, Jung Hwan;Jang, Hyun Su;Eom, Young Ik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.436-439
    • /
    • 2007
  • 추천 서비스는 사용자에게 적합한 서비스를 선응적으로 제공하는 기술로써, 전자상거래 환경을 중심으로 널리 이용되고 있다. 그러나, 유비쿼터스 환경에서도 가장 활발한 기술 접목이 이루어지는 홈 네트워크 환경 내에 추천 서비스가 적용된 사례는 많지 않다. 본 논문에서는 홈 네트워크 환경에서 누적된 사용자와 기기 간 상호작용 정보들을 바탕으로 사용자 위치 기반의 개인화된 서비스를 추천하는 알고리즘을 제안한다. 본 알고리즘에서는 밀도기반 초기값 선정 기법을 적용한 군집화를 통해 필요한 데이터만을 추출함으로써 서비스 추천의 효율성 및 정확성을 높인다. 또한, 사용자 기반의 협업 필터링을 이용하여 데이터가 충분히 많지 않은 상황에서도 정확한 서비스 추천을 수행한다.

Development of a Collaborative Recommendation System using feature selection (속성추출을 이용한 협동적 추천시스템의 개발)

  • Yoo, Sang-Jong;Kwon, Young-S
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.467-472
    • /
    • 2002
  • 전자상거래의 급속한 발달로 인하여 많은 상품이 거래가 되로 있다. 기업은 상품들 가운데서 적절한 상품을 고객에게 추천하기 위해서 추천시스템을 개발을 하였다. 그러나 사용자와 고객의 수가 급증하면서 추천을 위해서 많은 시간과 비용이 들게 되었다. 본 논문에서는 이러한 확장성의 문제점을 해결하기 위해서 속성추출방법을 추천시스템에 적용하여 추천의 시간을 단축하여 확장성의 문제를 해결하고자 개선된 추천시스템을 개발했다. 개선된 추천시스템의 추천속도는 기존의 추천시스템에 비하여 빠른 추천이 가능하게 되었다. 이로 인해 확장성의 문제를 해결할 수 있게 되었다.

  • PDF

The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation (지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향)

  • Jeong, Seung-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.164-175
    • /
    • 2022
  • The OTT (Over The Top) platform promotes itself as a distinctive competitive advantage in that it allows users to stay on the platform longer and visit more often through a Personalized Recommendation Service. In this study, the characteristics of the Personalized Recommendation Service are divided into three categories: recommendation accuracy, recommendation diversity, and recommendation novelty. Then proposed a research model which affects the usefulness of users to recognize recommendation services by each characteristics and leads to satisfaction of expectations. The result of conducting an online survey of 300 people in their 20s and 30s who subscribe Netflix shows that the perceived usefulness increased when the accuracy, variety, and novelty of Netflix's Recommendation Service were high. It was also confirmed that high perceived usefulness leads to satisfaction of expectations before and after Netflix use. The derived research results can confirm the importance of evaluating the personalized recommendation service in terms of user experience and provide implications for ways to improve the quality of recommendation services.

A Design of Recommendation System based on Context-Awareness (컨텍스트 인식 기반 상품 추천 시스템의 설계)

  • 이송희;이근호;김정범;김태윤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.52-54
    • /
    • 2002
  • 추천 시스템은 방문 고객 개개인의 취향이나 구매이력 등을 분석하여 고객이 필요로 하는 상품 또는 컨텐츠 정보의 서비스를 제공한다. 기존의 추천 시스템은 온라인에 초점을 맞추어 설계되었는데 본 논문에서는 무선 인터넷 서비스를 기반으로 무선 단말기(e.g. PDA, Cell Phone 등)를 통해 오프라인에서도 추천정보를 제공하는 시스템을 제안한다. 사용자에게 제공이 되는 추천 정보는 상품이나, 컨텐츠 또는 이벤트 정보이며 제안된 시스템에서는 데이터 마이닝 기법을 통해 데이터를 분류, 측정 및 예측하고 지식 기반방법과 collaborative filtering 방법을 혼합하여 양쪽의 장점만을 취하여 기존의 한정된 상품에 대한 정보와 침상에서만 제공이 되는 서비스를 오프라인까지 통합한 추천 시스템을 제안한다.

  • PDF

A Recommendation System using the Web and Mobile Environment (웹과 모바일 환경을 연동한 추천시스템)

  • Lee, Se-Il;Lee, Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.215-218
    • /
    • 2008
  • 정보의 홍수 속에서 살고 있는 사용자들은 좀 더 편리하게 정확한 서비스를 추천 받기를 원하고 있으며, 이러한 욕구들에 부응하여 추천시스템은 꾸준히 발전하고 있다. 유비쿼터스 컴퓨팅 환경에서는 사용자 환경과 사용자 자신의 컨텍스트 정보를 이용하여 추론하며, 그 결과를 사용자에게 서비스하고 있다. 그러나 실시간으로 획득된 컨텍스트 정보가 사용자에게 양질의 서비스를 제공하기 위하여 부족하거나 켄텍스트 정보를 모델링하는 방법에 문제가 있을 때에는 서비스의 질이 낮아질 수 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 모바일 환경에서 실시간으로 센서를 통하여 획들될 수 있는 컨텍스트 정보를 수집하고, 수집된 컨텍스트 정보는 하위수준의 정보를 상위수준의 정보로 모델링한다. 모델링된 컨텍스트 정보는 다시 정량화 단계 후, 웹 환경의 사용자 평가 정보와 결합하여 서비스를 추천한다. 이를 통하여 시스템은 유비쿼터스 환경에서 추천을 위한 양질의 컨텍스트 정보 부족 문제를 해결하였으며, 사용자에게 적합한 서비스를 제공할 수 있었다.

  • PDF

A Research on Real Estate Recommendation Model Using Public Data (개인 맞춤형 부동산 추천 웹 서비스)

  • Kim, Do-hyung;Kim, Min-kyung;Park, Ye-rin;Park, Yoo-Min;Hwang, Ho-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.93-96
    • /
    • 2021
  • 본 논문에서는 공공데이터를 이용한 개인 맞춤형 부동산 추천 방식을 제안한다. 이 추천 서비스는 기존의 가격 중심의 부동산 추천 방식이 아닌 개인이 원하는 요소 통해 부동산을 추천함으로써 사용자의 만족도를 높인다. 이 모델은 사용자가 실거주를 목적으로 하는 부동산 매물을 탐색하고자 할 때 거래 유형, 매물 유형, 가격 정보 뿐만 아니라 사용자가 자신의 주거지 근처에 형성되어 있길 원하는 편의 시설이나 기반시설, 치안 등의 환경 요소를 선택할 수 있도록 하고 선택된 요소들을 통합적으로 분석하여 주거지를 추천한다. 본 논문에서는 직접 구현한 서비스를 통해서 제안하는 새로운 맞춤형 부동산 추천 모델이 기존의 가격 중심의 부동산 추천 서비스보다 편의성 면에서 우수함을 보인다.

  • PDF

Member Organization-based Service Recommendation for User Groups in Internet of Things Environments (사물 인터넷 환경에서의 그룹 사용자를 위한 그룹 구성 정보 기반 서비스 추천 방법)

  • Lee, Jin-Seo;Ko, In-Young
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.786-794
    • /
    • 2016
  • Recommender systems can be used to assist users in selecting required services for their tasks in Internet of Things (IoT) environments in which diverse services can be provided by utilizing IoT devices. Traditional research on recommendation mainly focuses on predicting preferences of individual users. However, in IoT environments, not only individual users but also groups of users can access services in the environments. In this study, we analyzed user groups' preferences on services and developed service recommendation approach for new groups that do not have a history of accessing IoT-services in a certain place. Our approach extends the traditional user-based collaborative filtering by considering the similarity between user groups based on their member organization. We conducted experiments with a real-world dataset collected from IoT testbed environments. The results demonstrate that the proposed approach is effective to recommend services to new user groups in IoT environments.

An Adaptive Recommendation Service Scheme Using Context-Aware Information in Ubiquitous Environment (유비쿼터스 환경에서 상황 인지 정보를 이용한 적응형 추천 서비스 기법)

  • Choi, Jung-Hwan;Ryu, Sang-Hyun;Jang, Hyun-Su;Eom, Young-Ik
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.185-193
    • /
    • 2010
  • With the emergence of ubiquitous computing era, various models for providing personalized service have been proposed, and, especially, several recommendation service schemes have been proposed to give tailored services to users proactively. However, the previous recommendation service schemes utilize a wide range of data without and filtering and consider the limited context-aware information to predict user preferences so that they are not adequate to provide personalized service to users. In this paper, we propose an adaptive recommendation service scheme which proactively provides suitable services based on the current context. We use accumulated interaction contexts (IC) between users and devices for predicting the user's preferences and recommend adaptive service based on the current context by utilizing clustering and collaborative filtering. The clustering algorithm improves efficiency of the recommendation service by focusing and analyzing the data that is collected from the locations nearby the users. Collaborative filtering guarantees an accurate recommendation, even when the data is insufficient. Finally, we evaluate the performance and the reliability of the proposed scheme by simulations.