• Title/Summary/Keyword: 서비스러닝

Search Result 690, Processing Time 0.027 seconds

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Content-based Korean journal recommendation system using Sentence BERT (Sentence BERT를 이용한 내용 기반 국문 저널추천 시스템)

  • Yongwoo Kim;Daeyoung Kim;Hyunhee Seo;Young-Min Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.37-55
    • /
    • 2023
  • With the development of electronic journals and the emergence of various interdisciplinary studies, the selection of journals for publication has become a new challenge for researchers. Even if a paper is of high quality, it may face rejection due to a mismatch between the paper's topic and the scope of the journal. While research on assisting researchers in journal selection has been actively conducted in English, the same cannot be said for Korean journals. In this study, we propose a system that recommends Korean journals for submission. Firstly, we utilize SBERT (Sentence BERT) to embed abstracts of previously published papers at the document level, compare the similarity between new documents and published papers, and recommend journals accordingly. Next, the order of recommended journals is determined by considering the similarity of abstracts, keywords, and title. Subsequently, journals that are similar to the top recommended journal from previous stage are added by using a dictionary of words constructed for each journal, thereby enhancing recommendation diversity. The recommendation system, built using this approach, achieved a Top-10 accuracy level of 76.6%, and the validity of the recommendation results was confirmed through user feedback. Furthermore, it was found that each step of the proposed framework contributes to improving recommendation accuracy. This study provides a new approach to recommending academic journals in the Korean language, which has not been actively studied before, and it has also practical implications as the proposed framework can be easily applied to services.

Job Analysis of Visiting Nurses in the Process of Change Using FGI and DACUM (변화의 과정에 있는 방문간호사의 직무분석: FGI와 DACUM을 적용하여)

  • Kim, Jieun;Lee, Insook;Choo, Jina;Noh, Songwhi;Park, Hannah;Gweon, Sohyeon;Lee, kyunghee;Kim, Kyoungok
    • Research in Community and Public Health Nursing
    • /
    • v.33 no.1
    • /
    • pp.13-31
    • /
    • 2022
  • Purpose: This study conducted a job analysis of visiting nurses in the process of change. Methods: Participants were the visiting nurses working for the Seoul Metropolitan city. On the basis of the Public Health Intervention Wheel model, two times of the focus group interview (FGI) with seven visiting nurses and one time of the Developing a Curriculum (DACUM) with 34 visiting nurses were performed. A questionnaire survey of 380 visiting nurses was conducted to examine the frequency, importance and difficulty levels of the tasks created by using the FGI and DACUM. Results: Visiting nurses' job was derived as the theme of present versus transitional roles. The present role was categorized as 'providing individual- and group-focused services' and 'conducting organization management', while the transitional role was categorized as 'providing district-focused services' and 'responding to new health issues'. The job generated 13 duties, 28 tasks, and 73task elements. The tasks showed the levels of frequency (3.65 scores), importance (4.27 scores), and difficulty (3.81 scores). All the tasks were determined as important, exceeding the average 4.00 scores. The group- and district-focused services of the tasks were recognized as more difficult but less frequent tasks. Conclusion: The visiting nurses exert both present and transitional roles. The transitional roles identified in the present study should be recognized as an extended role of visiting nurses in accordance with the current changing healthcare needs in South Korea. Finally, the educational curriculum for visiting nurses that reflects the transitional roles from the present study is needed.

A Study on Webtoon Background Image Generation Using CartoonGAN Algorithm (CartoonGAN 알고리즘을 이용한 웹툰(Webtoon) 배경 이미지 생성에 관한 연구)

  • Saekyu Oh;Juyoung Kang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.173-185
    • /
    • 2022
  • Nowadays, Korean webtoons are leading the global digital comic market. Webtoons are being serviced in various languages around the world, and dramas or movies produced with Webtoons' IP (Intellectual Property Rights) have become a big hit, and more and more webtoons are being visualized. However, with the success of these webtoons, the working environment of webtoon creators is emerging as an important issue. According to the 2021 Cartoon User Survey, webtoon creators spend 10.5 hours a day on creative activities on average. Creators have to draw large amount of pictures every week, and competition among webtoons is getting fiercer, and the amount of paintings that creators have to draw per episode is increasing. Therefore, this study proposes to generate webtoon background images using deep learning algorithms and use them for webtoon production. The main character in webtoon is an area that needs much of the originality of the creator, but the background picture is relatively repetitive and does not require originality, so it can be useful for webtoon production if it can create a background picture similar to the creator's drawing style. Background generation uses CycleGAN, which shows good performance in image-to-image translation, and CartoonGAN, which is specialized in the Cartoon style image generation. This deep learning-based image generation is expected to shorten the working hours of creators in an excessive work environment and contribute to the convergence of webtoons and technologies.

Detection of video editing points using facial keypoints (얼굴 특징점을 활용한 영상 편집점 탐지)

  • Joshep Na;Jinho Kim;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, various services using artificial intelligence(AI) are emerging in the media field as well However, most of the video editing, which involves finding an editing point and attaching the video, is carried out in a passive manner, requiring a lot of time and human resources. Therefore, this study proposes a methodology that can detect the edit points of video according to whether person in video are spoken by using Video Swin Transformer. First, facial keypoints are detected through face alignment. To this end, the proposed structure first detects facial keypoints through face alignment. Through this process, the temporal and spatial changes of the face are reflected from the input video data. And, through the Video Swin Transformer-based model proposed in this study, the behavior of the person in the video is classified. Specifically, after combining the feature map generated through Video Swin Transformer from video data and the facial keypoints detected through Face Alignment, utterance is classified through convolution layers. In conclusion, the performance of the image editing point detection model using facial keypoints proposed in this paper improved from 87.46% to 89.17% compared to the model without facial keypoints.

AI-based stuttering automatic classification method: Using a convolutional neural network (인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용)

  • Jin Park;Chang Gyun Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.71-80
    • /
    • 2023
  • This study primarily aimed to develop an automated stuttering identification and classification method using artificial intelligence technology. In particular, this study aimed to develop a deep learning-based identification model utilizing the convolutional neural networks (CNNs) algorithm for Korean speakers who stutter. To this aim, speech data were collected from 9 adults who stutter and 9 normally-fluent speakers. The data were automatically segmented at the phrasal level using Google Cloud speech-to-text (STT), and labels such as 'fluent', 'blockage', prolongation', and 'repetition' were assigned to them. Mel frequency cepstral coefficients (MFCCs) and the CNN-based classifier were also used for detecting and classifying each type of the stuttered disfluency. However, in the case of prolongation, five results were found and, therefore, excluded from the classifier model. Results showed that the accuracy of the CNN classifier was 0.96, and the F1-score for classification performance was as follows: 'fluent' 1.00, 'blockage' 0.67, and 'repetition' 0.74. Although the effectiveness of the automatic classification identifier was validated using CNNs to detect the stuttered disfluencies, the performance was found to be inadequate especially for the blockage and prolongation types. Consequently, the establishment of a big speech database for collecting data based on the types of stuttered disfluencies was identified as a necessary foundation for improving classification performance.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective (디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서)

  • Yoon Min Hwang;Sung Won Hong
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.125-141
    • /
    • 2019
  • With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.

The Effectiveness of Foreign Language Learning in Virtual Environments and with Textual Enhancement Techniques in the Metaverse (메타버스의 가상환경과 텍스트 강화기법을 활용한 외국어 학습 효과)

  • Jeonghyun Kang;Seulhee Kwon;Donghun Chung
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.155-172
    • /
    • 2024
  • This study investigates the effectiveness of foreign language learning through diverse treatments in virtual settings, particularly by differentiating virtual environments with three textual enhancement techniques. A 2 × 3 mixed-factorial design was used, treating virtual environments as within-subject factors and textual enhancement techniques as between-subject factors. Participants experienced two videos, each in different virtual learning environments with one of the random textual enhancement techniques. The results showed that the interaction between different virtual environments and textual enhancement techniques had a statistically significant impact on presence among groups. In examining main effects of virtual environments, significant differences were observed in flow and attitude toward pre-post learning. Also, main effects of textual enhancements notably influenced flow, intention to use, learning satisfaction, and learning confidence. This study highlights the potential of Metaverse in foreign language learning, suggesting that learner experiences and effects vary with different virtual environments.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.