• Title/Summary/Keyword: 서보광산

Search Result 12, Processing Time 0.019 seconds

Chemical Speciation and Potential Mobility of Heavy Metals in Tailings and Contaminated Soils (광미 및 오염된 토양에서 중금속의 존재형태 및 잠재적인 이동도)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.87-98
    • /
    • 2004
  • Tailings and contaminated soils from Cheongyang mine and Seobo mine have been analysed by ICP-AES from 5-step sequential extraction method of multielement determination on extraction solutions at each step. As and Co within tailings and contaminated soils from Cheongyang mine and Seobo mine are mainly in the residual phase. In case of Cd, Cu and Zn, the most dominant fraction for tailings of Cheongyang mine is the oxidizable phase, while tailings of Seobo mine is dominated by the residual phase. In contaminated soils from Seobo mine, the predominant fraction for Cd, Cu and Zn is the Fe-Mn oxide phase. The exchangeable fraction of Pb in tailings from Cheongyang mine and Seobo mine is relatively high compared with those of other metals; whereas Pb fraction in contaminated soils from Seobo mine is largely associated with the residual fraction.

폐중석광산의 광미와 오염된 토양에 대한 중금속 존재형태 연구

  • 강민주;이평구;최상훈;신성천
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.299-301
    • /
    • 2003
  • 광미와 오염된 토양에 함유되어 있는 중금속 원소는 존재형태에 따라서 환경에 미치는 영향의 차이가 있다. 그러므로 중금속 원소의 존재형태를 규명하여 물리화학적 환경변화에 따른 중금속의 거동을 예측하고자 Tessier et al. (1979)의 방법을 이용하여 연속추출을 수행하였다. 청양광산과 서보광산의 광미를 비교하면, As와 Co는 두 광산 모두 잔류형태로 안정화되었다. Cd과 Zn은 서보광산의 광미가 청양광산의 광미보다 잔류형태가 더 우세하였다. Pb는 서보광산의 광미가 양이온교환형태로 존재하는 함량이 높고 청양광산의 광미도 양이온교환과 탄산염광물의 형태로 존재하는 함량이 높아 오염 확산의 우려가 있다. 서보광산의 오염된 토양의 경우, As, Co, Cd, Cu및 Zn는 대체로 안정한 형태였으나, Pb는 산화환경에서 불안정한 형태로 존재하였다.

  • PDF

pH변화에 따른 광미와 오염된 토양에 함유된 중금속 용출특성

  • 이평구;강민주;최상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.141-144
    • /
    • 2003
  • 청양 및 서보광산에서 채취한 광미 및 오염된 토양에 대한 산성비를 고려한 용출실험 결과, 아연, 카드뮴 및 망간 pH 6.2-5.8, 철 pH 5.2-3.2, 코발트 pH 4.4-3.2, 구리 pH 3.2-3.0, 납과비소 pH3.0-3.5의 용출조건에서 최초로 각 원소의 용출이 발생하였다. 반응용액의 최종 pH5.0-1.5사이에서 용출되는 중금속은 이온교환형태 및 탄산염광물형태와 수반된 것이 용해된 것이다. 반응용액의 최종 pH1.5이하에서 용출되는 중금속은 철과 밀접하게 수반된 것으로 해석되었다. 청양광산과 서보광산의 광미가 pH2.0이하로 유지되는 경우가 발생한다면, 청양광산은 비소(최대 6,006$\mu\textrm{g}$/g), 아연(최대 2,503$\mu\textrm{g}$/g) 및 납(최대 29,638$\mu\textrm{g}$/g), 서보광산은 납(최대 2,258$\mu\textrm{g}$/g)과 111소(최대 874$\mu\textrm{g}$/g)의 오염확산이 크게 우려되며, 이 결과는 광미에 대한 환경복원이 필요한 것을 지시한다. 서보광산의 오염된 토양은 pH3.0까지의 산성비와 반응하는 경우에는 중금속의 오염확산이 거의 우려되지 않으며, pH3.0이하의 강산 용액과 반응한다면 아연의 오염확산이 우려된다.

  • PDF

서보광산의 폐광석 내 2차 산화광물의 중금속 고정화에 대한 광물학적 연구

  • 강민주;이평구;박성원
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.43-47
    • /
    • 2003
  • 산화환경에 노출된 폐광석에 포함되어 있는 황화광물은 산소와 물과의 화학반응을 통한 산화작용을 받게 되고 주변 환경에 유해한 금속원소의 용출이 발생될 것으로 예상된다. 그러나 용해된 금속이온은 침전(precipitation), 공침(coprecipitation), 흡착(adsorption)반응에 의해 수용액으로부터 제거되어 자연적으로 고정화될 수 있다. 이번 연구는 서보광산의 폐광석 내 용해된 중금속원소들의 이동을 제한하는 요인으로서 2차 산화광물의 침전 및 용해된 중금속 원소들의 흡착 가능성을 광물학적으로 연구하였다. (중략)

  • PDF

서보광산 주변의 중금속 오염평가

  • 강민주;최상훈;이평구;신성천
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.219-222
    • /
    • 2003
  • 폐광된 서보광산 주변의 주요 중금속 오염원으로는 폐광석과 과거에 선광을 하였던 시설 부근에 방치되어 있는 광미를 들 수 있다 과거 선광시설 주변에서 채취한 광미에는 황화광물이 다량으로 함유되어 있어 계속 방치되어 있을 경우에는 장마 기간동안 유실되어 하천 퇴적물을 크게 오염시키는 원인이 될 수 있다. 또한, 이 광미에 다량으로 함유되어 있는 황화광물이 산화작용을 받을 경우, 용해된 중금속 원소가 주변 토양 혹은 하천퇴적물 오염의 원인이 될 수 있다. (중략)

  • PDF

Mechanisms of Immobilization and Leaching Characteristics of Arsenic in the Waste Rocks and Tailings of the Abandoned Mine Areas (폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성)

  • Kang Min-Mu;Lee Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.499-512
    • /
    • 2005
  • EPMA determined that Fe(Mn)-(oxy)hydroxides and well-crystallized Fe-(oxy)hydroxides and could contain a small amount of As $(0.3-11.0\;wt.\%\;and\;2.1-7.4\;wt.\%\;respectively)$. Amorphous crystalline Fe-(oxy) hydroxide assemblages were identified as the richest in As with $28-36\;wt.\%$. On the ternary $As_2O_5-SO_3-Fe_2O_3$ diagram, these materials were interpreted here as 'scorodite-like'. Dissolved As was attenuated by the adsorption on Fe-(oxy) hydroxides and Fe(Mn)-(oxy) hydroxides and/or the formation of an amorphous Fe-As phase (maybe scorodite: $FeAsO_4\cdot2H_2O$). Leaching tests were performed in order to find out leaching characteristics of As and Fe under acidic conditions. At the initial pHs 3 and 5, As contents dissolved from tailings of the cheongyang mine significantly increased after 7 days due to the oxidation of As-bearing secondary minerals (up to ca. $2.4\%$ of total), while As of Seobo mine-tailing samples was rarely released (ca. $0.0-0.1\%$ of total). Dissolution experiments at an initial pH 1 liberated a higher amount of As (ca. $1.1-4.2\%$ of total for Seobo tailings, $1.5-14.4\%$ of total for Cheongyang tailings). In addition, good correlation between As and Fe in leached solutions with tailings was observed. The kinetic problems could be the important factor which leads to increasing concentrations of As in the runoff water. Release of As from Cheongyang tailings can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment, while precipitation of secondary minerals and the adsorption of As are efficient mechanisms for decreasing the mobilities of As in the surface environment of Seobo mine area.

Heavy Metal Retention by Secondary Minerals in Mine Waste Rocks at the Abandoned Seobo Mine (서보광산 폐광석 내 2차 광물에 의한 중금속 고정화)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.177-189
    • /
    • 2003
  • The main purposes of this study are to utilize mineralogical studies such as optical microscope, XRD and SEM/EDS analyses to characterize the oxidation of sulfide minerals and the mechanisms controlling the movement of dissolved metals from waste rocks at the abandoned Seobo mine. Mineralogical research of the waste rocks confirms the presence of anglesite, covellite, goethite, native sulfur and nsutite as secondary minerals, suggesting that these phases control the dissolved concentrations of As, Cu, Fe, Mn, Pb and Zn. The dissolved metals are precipitated, adsorbed and/or coprecipitated with(or within) Fe(Mn)-hydroxides and Mn(Fe)-hydroxides. The main phases of secondary mineral, Fe-hydroxide, can be classified as amorphous or poorly crystalline and more crystallized phases(e.g. goethite) by crystallinity. Amorphous or poorly crystalline Fe-hydroxide has relatively high As contents(9-24 wt.%). This poorly crystalline Fe-hydroxide changes toward more crystallized phase(e.g. goethite) which contains relatively low As(0.6-7.7 wt.%). These results are mainly due to the progressive release of As with the crystallization evolution of the As-trapping poorly crystalline Fe-hydroxides. It is also attributed to the differences of specific surface areas between the poorly crystalline Fe-hydroxides and well crystallized phases. The dissolved metals from waste rocks at Seobo mine area are naturally attenuated by a series of precipitation(as Fe, Mn, Cu, Pb), coprecipitation(Fe, Mn) and adsorption(As, Cu, Pb, An) reactions. The results of mineralogical researches permit to assess the environmental impacts of mine waste rocks in the areas, and can be used as a useful data to lay available mine restoration plan.

Changes in Natural Antioxidants in Oils Extracted from the Bran and Germ of Keumkang and Dark Northern Spring Wheats During Photo-oxidation (금강밀과 dark northern spring밀의 기울과 배아에서 추출한 기름의 광산화 과정 중 천연산화방지성분의 변화)

  • Choi, Hyun-Ki;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Naturally present antioxidants, tocopherols, carotenoids, and phospholipids in the bran and germ oils from Keumkang (K-WBG oil) and Dark Northern Spring wheats (DNS-WBG oil) were determined during storage under 1700 lux light at $5^{\circ}C$ by HPLC. Oil oxidation was monitored by peroxide values (POV) and conjugated dienoic acid content. The results showed that antioxidants were degraded during storage of the WBG oils under light, with higher degradation rates for carotenoids and phospholipids in the K-WBG oil compared to the DNS-WBG oil. Light increased oil oxidation and the rate of oxidation was higher in K-WBG oil than in the DNS-WBG oil. There was a high correlation between POV and residual amounts of antioxidants during photo-oxidation, with phospholipids showing the greatest effects on POV. This study suggests that a higher amount and lower degradation rate of phospholipids in the DNS-WBG oil contributed to its higher photo-oxidative stability compared to the K-WBG oil.

Pb Isotopic Composition of the Ore Deposits Distributed in Jeonbuk Province (전북 광상의 납 동위원소 조성에 대한 고찰)

  • Chung Jae-Il;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.81-89
    • /
    • 2006
  • Pb isotopic compositions were determined from the ore deposits of Beonam, Dongjin, Jeoksang and Bukchang mines distributed within Jeolabuk-do. As a result, individual mine shows significantly different values of Pb isotopic compositions from each other. Pb isotopic values of the Beonam, Bukchang and Dongjin mines altogether from linear variation, but it is too steep to represent their formation age. Instead, such trend suggests that these ore leads were originated from binary mixing. Precambrian basement rocks and Mesozoic granitoids are suggested for such two end-members. The relative contribution of lead from each source seems to be quite different for each ore deposit, implying that the circulation of the ore-forming fluid was very localized when they were formed. In the case of Dongjin mine it seems significant portion of the ore leads were originated from the basement rocks, which suggests that related igneous rock seems to have acted as heat source to generate circulation of the fluid rather than the source of the ore-forming elements.

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.