• Title/Summary/Keyword: 섀시

Search Result 42, Processing Time 0.02 seconds

Automated Visual Inspection System of PDP Chassis (PDP 섀시 자동 시각 검사 시스템 구현)

  • 신은석;한광수;최준수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.694-696
    • /
    • 2004
  • PDP 섀시는 우리나라의 핵심 제품중의 하나인 POP의 부품으로 특정 공장에서 한 달에 수만 개 이상을 생산하고 있다. 섀시에 포함된 홀, 탭홀, 스터드, 리벳의 유무를 검사하는데 모든 제품에 대한 전수검사가 요구되고 있다. 본 연구에서는 컴퓨터 비젼 기술을 이용한 POP 섀시 자동 시각 검사 시스템을 설계 구현하였고 이를 산업체에서 적용한 결과 신속하고 정확한 100% 검사가 가능함을 보였다.

  • PDF

Performance Improvement of Integrated Chassis Control with Determination of Rear Wheel Steering Angle (후륜 조향각 결정을 통한 통합 섀시 제어기의 성능 향상)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.111-119
    • /
    • 2017
  • This paper presents a method to determine the rear steering angle in integrated chassis control with electronic stability control (ESC) and rear wheel steering (RWS). A control yaw moment needed to stabilize a vehicle should be distributed into the tire forces generated by the ESC and RWS. Weighted pseudo-inverse control allocation (WPCA) is adopted to determine the tire forces. Four methods are proposed to calculate the rear wheel steering angle. To validate the proposed methods, a simulation is performed using a vehicle simulation software package, CarSim. The simulation results show that the proposed method for determining the rear wheel steering angle improves the performance of the integrated chassis control.

Development of Helicopter Chassis Dynamometer System for the Scaled Helicopter Ground Test (축소 헬기 지상시험을 위한 헬리콥터 섀시다이나모미터 개발)

  • Kim, Ick-Tae;Kim, Jae-Soo
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2012
  • This paper developed Helicopter Chassis Dynamometer System(HCDS) to perform the bench test of the scaled rotor blade and to design a scaled model helicopter flight test bed and accomplished the scaled helicopter ground test. The scaled helicopter should be checked the relation of thrust and power input to maintain regular RPM by collective pitch angle versus throttle input. It showed hovering performance results of IGE with OGE, the max. F.M. was 0.76 without ground effect. The results of the chassis dynamometer test of scaled helicopter will usefully apply to design the scaled helicopter and evaluate the rotor blade performance.

Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution (최적 요모멘트 분배 방법을 이용한 고장 안전 통합 섀시 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2014
  • This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim.

An Efficient Heuristic to Solve Vehicle Routing Problem for Container Shuttle Service (컨테이너 셔틀 서비스를 위한 차량 경로 문제의 근사적 해법)

  • Shin, Jae-Young;Oh, Sung-Inn;Park, Jong-Won
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.583-588
    • /
    • 2009
  • Generally, the container road transportation can be divided into three types; short distance, long distance and shuttle transportation. Specially, the shuttle service occurs several amounts of container which is same as O/D pairs. Also container vehicle can be divided into three types according to the chassis types of vehicle; only 20-feet container, only 40-feet container and combined chassis trailer. Combined chassis trailers can load two 20-feet containers or one 40-feet container. This paper deals with Vehicle Routing Problem (VRP) for delivering containers considering shuttle service. This problem is similar to the previously studied Shin and Oh (2008), but the characteristics of shuttle service must be considered additionally. We formulate the container shuttle transportation planning problem using combined chassis trailers based on VRP with pick-up and delivery which can visit each node more than one time, and propose an efficient solution procedure.

Integrated Chassis Control with Electronic Stability Control and Active Rear Steering (자세 제어 장치와 능동 후륜 조향을 이용한 통합 섀시 제어)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1291-1297
    • /
    • 2014
  • This paper proposes integrated chassis control (ICC) with electronic stability control (ESC) and active rear steering (ARS). Direct yaw moment control is used to generate a control yaw moment. A weighted pseudo-inverse-based control allocation (WPCA) method is adopted to distribute the control yaw moment into tire forces, generated by ESC and ARS. Simulation-based tuning of variables weights in the WPCA is used to enhance the yaw moment distribution performance. Simulations using the vehicle simulation software $CarSim^{(R)}$ show that the proposed ICC is effective in improving maneuverability and lateral stability.

Adaptive Algorithms for Yaw Moment Distribution with ESC and ARS (적응 알고리즘을 이용한 ESC와 ARS 기반 요 모멘트 분배)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.997-1003
    • /
    • 2016
  • This paper presents an application of adaptive algorithms for yaw moment distribution with electronic stability control (ESC) and active rear steering (ARS) in integrated chassis control (ICC). Integrated chassis control consists of upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control required to stabilize a vehicle. In the lower-level controller, adaptive algorithms are applied to determine the required brake pressure of ESC and the necessary steering angle of ARS, in order to generate the control yaw moment. Simulation is performed using the vehicle simulation package CarSim to validate the proposed method.