• Title/Summary/Keyword: 생흡착

Search Result 61, Processing Time 0.021 seconds

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Removal of 1,4-dioxane in Ozone and Activated Carbon Process (오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1280-1286
    • /
    • 2006
  • Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.

Gaseous TCE and PCE Degradation with or without a Nonionic Surfactant (비이온 계면활성제의 주입과 비주입 할 경우 기체 상태의 TEC와 PEC 분해)

  • Kim, Jong-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 1997
  • This study was conducted to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the re-moval efficiency of TCE or PCE. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE, at residence times of 1.5~7 min. The removal efficiency of gaseous TCE was 100% at a residence time of 7 min and its average inlet concentration of 85 ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4~7 min and its average concentrations of 47~84 ppm. It was found that adsorption by GAC was a minor mechanism for TCE and PCE removal in the activated carbon biofilters. Transformation yields of gaseous TCE and PCE were about 8~48 g of TCE/g of phenol and 6~25g of PCE/g of phenol, according to residence times. This values showed one or two orders of magnitude less than aqueous TCE degradation. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5~50 mg/L.

  • PDF

Assessment of Hydrogeochemical Characteristics and Contaminant Dispersion of Aquifer around Keumsan Municipal Landfill (금산 매립장 주변 대수층의 수리지화학적 특성 및 오염 확산 평가)

  • Oh, In-Suk;Ko, Kyung-Seok;Kong, In-Chul;Ku, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.657-672
    • /
    • 2008
  • The purposes of this study are to investigate the hydrogeochemical characteristics of groundwaters around Keumsan municipal landfill, and to evaluate the contaminant dispersion from the landfill and its environmental impact. To achieve these goals, groundwater quality logging, hydrochemical analysis, multivariate statistical analysis, and contaminant transport modeling were performed. The water quality logging indicated a leaking from the landfill at the depth of 4-12m around a leachate sump. Electrical conductivity data indicated that groundwaters within 70-100m from landfill were affected by the landfill leakage. Principal components 1 and 2 obtained from principal components analysis (PCA) reflect the influence of leachate and the characteristics of aquifer media, respectively. The results of principal component analysis also indicated the natural attenuation processes such as cation exchange, sorption, and microbial biodegradation. The modeling results showed that groundwater flow westward along a valley from the landfill and contaminants transport accordingly.

Purification and Characterization of Radish Myrosinase (무우 Myrosinase의 정제 및 특성)

  • Kim, Mee-Ree;Rhee, Hei-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.136-144
    • /
    • 1989
  • The purification of myrosinase from radish roots was performed using Concannavalin A-Sepharose affinity chromatography and gel permeation HPLC, which gave a 22-fold-purification(S.P.A.=39,000 units/mg) with 50% recovery, SDS-polyacrylamide gel electrophoresis showed a single major band, suggestive of a relatively pure myrosinase, and the M.W. of the enzyme determined on gel permeation HPLC was ca. 124K. The enzyme showed on optimum pH of 6.5 and was stable at pH 6 to 7 at room temperature, but unstable below pH 4. The enzyme possessed an optimum temperature of $37^{\circ}C$, and gave a Vmax value of $40\;{\mu}moles/mg{\cdot}min$ and a Km value of 0.12mM for sinigrin. The purified myrosinase was activated maximally by 0.6mM of ascorbic acid, but somewhat inhibited by more than 2 mM ascorbic acid. The activities of myrosinase present in the peelings and the peeled radish amounted to approximately 1,333 units/g and 140 units/g weight, respectively and the peelings contained much more myrosinase activity than the peeled radish.

  • PDF

Factors of Trichloroethylene Degradation by Methanotrophic Consortium Biofilm Reactor(MCBR) (혼합 메탄자화균 생물막 반응기에 의한 Trichloroethylene 분해의 영향 인자)

  • Lee, Moo-Yeal;Cho, Hyun-Jeong;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.991-1000
    • /
    • 2000
  • Methanotrophic consortium utilizing methane as the primary carbon source and secreting soluble methane monooxygenase (sMMO) was immobilized on celite R-635 to continuously treat a wastewater containing trichloroethylene (TCE). With influent 2 ppm of TCE. 80.4 and 84.5% of TCE was degraded in 6 and 20 hour of hydraulic retention time (HRT). respectively. and the removal efficiency of TCE was increased with an increase in HRT in methanotrophic consortium biofilm reactor (MCBR). With influent 5 ppm of TCE and 10 hour of HRT. average efficiency of TCE removal was decreased in initial stage. but gradually increased to 81%. TCE was degraded to 88.5 and 96.5% with 10 and 15 hour of HRT. respectively. when methane was supplied alternately with continuous oxygen supply at influent 5 ppm of TCE. The efficiency of TCE degradation was decreased probably because oxidation reaction of methane was proceeded slowly on MMO. when high concentration of methane was supplied with depletion of oxygen. As results of the pilot-scale study. biodegradation of TCE by MCBR system might be feasible at full-scale operation.

  • PDF

Identification of C3G(cyanidin-3-glucoside) from Mulberry Fruits and Quantification with Different Varieties (오디에서 C3G(cyanidin-3-glucoside)의 분리, 동정 및 계통별 함량분석)

  • 김현복;김선림
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.2
    • /
    • pp.90-95
    • /
    • 2003
  • This study was carried out to identify of C3G (cyanidin-3-glucoside) from mulberry fruits and quantify with different varieties. C3G of mulberry fruits was extracted with 1% HCl-MeOH and purified with open column (5${\times}$90cm) which filled with Amberlite IRC-50 ion exchange resin. The $\lambda$max ranges of the purified C3G on UV/vis spectrum were 516nm and 280nm. Also, molecular weight of C3G from mulberry fruits by LC-Mass was determined as 449. From above results, we concluded that anthocyanin pigment of mulberry fruits was C3G only. The cyanidin-3-glucoside (C3G) was separated and quantified by High Performance Liquid Chromatography (HPLC) system using a Nova-Pack C$\_$18/ column. Mean content of the 35 tested accessions was 0.89%. Also fruity characteristics as well as C3G content to select the desirable mulberry varieties for the production of fruit were researched and analyzed. We selected three suitable varieties such as 'Susungppong', 'Kangsun', and 'Jeolgokchosaeng(Chungpuk)'.

Uptake of Butachlor by Rice Seedlings and Its Phytotoxic Action to the Physiological Activities (수도묘(水稻苗)의 Butachlor 흡수(吸收) 및 약해발생(藥害發生) 특성(特性)에 관한 생리적(生理的) 연구(硏究))

  • Chung, Bong-Jin;Kwon, Yong-Woong
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.57-68
    • /
    • 1981
  • To clarify the mode of uptake of butachlor (2-chloro-2', 6'-diethyl-N-(butoxymethyl) acetanilide) by rice seedlings, its phytotoxic action to growth and physiological activities, studies were conducted with rice seedlings, at the 6th or 7th leaf-stage, which were treated with nutrient solution containing butachlor 0, 1.8, 3.6, 7.2, 10.8 or 14.4 ppm for 1, 2 or 4 days, in other case, the solutions were thereafter renewed with the untreated nutrient solution for further growth. Uptake of butachlor by rice seedlings increased linearly with increase of its concentration and duration of uptake. Butachlor inhibited root growth more than shoot growth, furthermore, the inhibitory effect on the shoot growth was greater in height than in weight or leafing rate. After 4 day-treatment, the rates of shoot growth in weight were delayed for 4 days. Butachlor inhibited water uptake rapidly and linearly with increase of its external concentration. The reduced uptake of water was followed by slow increase in the stomatal resistance of leaves. Upon completion of butachlor treatment, rate of water uptake was recovered rapidly, but the stomatal resistance with lag in time. Butachlor did not affect the uptake of cation such as ammonium, potassium and calcium, but inhibited substantially uptake of nitrate in proportion to its concentration. Especially, butachlor did not affect synthesis and degradation of nitrate reductase. In addition, butachlor has shown much greater binding to the lipidic substances from rice roots than the proteinous material. The primary mechanism of phytotoxic action of butachlor does not seem to be its effect on the protein synthesis, but great affinity to membranes. The inhibition of water uptake, and its subsequent closure of stomates is thought very important for reduced growth under mild phytotoxicity.

  • PDF

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water (산 오염수 전처리용 침전 및 중화 특성)

  • Im, Jongdo;Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

Mapping the Research Landscape of Wastewater Treatment Wetlands: A Bibliometric Analysis and Comprehensive Review (폐수 처리 위한 습지의 연구 환경 매핑: 서지학적 분석 및 종합 검토)

  • C. C. Vispo;N. J. D. G. Reyes;H. S. Choi;M.S. Jeon;L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.145-158
    • /
    • 2023
  • Constructed wetlands (CWs) are effective technologies for urban wastewater management, utilizing natural physico-chemical and biological processes to remove pollutants. This study employed a bibliometric analysis approach to investigate the progress and future research trends in the field of CWs. A comprehensive review of 100 most-recently published and open-access articles was performed to analyze the performance of CWs in treating wastewater. Spain, China, Italy, and the United States were among the most productive countries in terms of the number of published papers. The most frequently used keywords in publications include water quality (n=19), phytoremediation (n=13), stormwater (n=11), and phosphorus (n=11), suggesting that the efficiency of CWs in improving water quality and removal of nutrients were widely investigated. Among the different types of CWs reviewed, hybrid CWs exhibited the highest removal efficiencies for BOD (88.67%) and TSS (95.67%), whereas VSSF, and HSSF systems also showed high TSS removal efficiencies (83.25%, and 78.83% respectively). VSSF wetland displayed the highest COD removal efficiency (71.82%). Generally, physical processes (e.g., sedimentation, filtration, adsorption) and biological mechanisms (i.e., biodegradation) contributed to the high removal efficiency of TSS, BOD, and COD in CW systems. The hybrid CW system demonstrated highest TN removal efficiency (60.78%) by integrating multiple treatment processes, including aerobic and anaerobic conditions, various vegetation types, and different media configurations, which enhanced microbial activity and allowed for comprehensive nitrogen compound removal. The FWS system showed the highest TP removal efficiency (54.50%) due to combined process of settling sediment-bound phosphorus and plant uptake. Phragmites, Cyperus, Iris, and Typha were commonly used in CWs due to their superior phytoremediation capabilities. The study emphasized the potential of CWs as sustainable alternatives for wastewater management, particularly in urban areas.