• Title/Summary/Keyword: 생활계

Search Result 950, Processing Time 0.028 seconds

2014년 전기계를 돌아보다

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.456
    • /
    • pp.26-32
    • /
    • 2014
  • 청말띠 해를 맞아 힘차게 첫걸음을 내디뎠던 2014년도 어느덧 막바지로 접어들었다. 2014년은 전력산업계에 있어 어떤 해였을까. 소위 직장 생활을 오래한 고참 직원들의 경우에는 업무에 대한 능숙함과 여유가 묻어난다. 하지만 반대로 신입사원들은 낯선 환경에 적응하느라 좌충우돌하기 마련이다. 아마도 2014년은 그런 신입사원의 모습이 아니었을까. 익숙해질만 하면 환경이 급변하며 낯선 분위기를 자아냈다. 다사다난했던 2014년을 되돌아본다.

  • PDF

Rapid Assessment Method for Small Wetlands Function (RAMS) Distributed in the Living Area (생활권에 분포하는 소규모 습지 기능 간편평가기법(RAMS) 연구)

  • MiOk Park;BonHak Koo
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.114-125
    • /
    • 2024
  • Wetlands in the living area are important ecological resources that are the basis for the daily life or farming activities of local residents, and have high ecological value such as ecosystem services and green infrastructure. This study was carried out to develop a functional evaluation methodology optimized for small-scale wetlands(RAMS). Based on on-site evaluation by experts, surveys and in-depth interviews, four functional items, including biodiversity, health, hydrophilic culture and ecology, water circulation, and carbon absorption, and 15 detailed indicators, and the evaluation grade for each detailed indicator, were developed on a 5-point scale. The evaluation methodology optimized for small-scale living areas wetlands (RAMS) proposed as a result of this study can be used as basic data for conservation and restoration and management of small-scale living areas wetlands at home and abroad.

Digital Watermarking on the Color coordinate (칼라 좌표계에서의 디지털 워크마킹)

  • Lee Chang-Soon;Jung Song-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.102-108
    • /
    • 2005
  • CIELAB coordinate is represented by one lightness component and two chromaticity components and similar to human visual system. Visual devices such as computer monitor display images using RGB coordinate. We propose a technique for inserting the watermark of visually recognizable mark into the middle frequency domain of image. RGB coordinate image is transformed into CIELAB coordinate, which include the characteristics of Human vision and then a* component is transformed into DFT(Discrete Fourier transform) transform.

  • PDF

A study on the physico-chemical characteristics of municipal solid wastes generated in the sunchon city (순천시의 생활폐기물 발생량 예측 및 재활용시설의 용량산정에 관한 연구)

  • Hu, Kwan;Moon, Ok-Ran;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.125-134
    • /
    • 2001
  • The purpose of this study is to provide basic information for a future countermeasure municipal and to establish several wastes policy after investigating solid wastes from Sunchon City. In addition, this research can be supported to manage of recycling plant and to reuse plant of each wastes. Results are as bellows after checking up and analysis type of waste in Sunchon city Unit solid waste generation rate from single family is $0.50kg/person{\cdot}day$, and total solid wastes are 41.9ton/day. Unit solid waste generation rate from apartments is $0.45kg/person{\cdot}day$, and solid wastes generation is 55.5ton/day. Unit solid waste generation rate from agricultural is $0.22kg/person{\cdot}day$ and total solid wastes are 13.5ton/day. That show total amount of municipal solid wastes from residential are 110.9ton/day. Unit solid waste generation rate from traditional markets is $1.85kg/person{\cdot}day$, and solid waste total volume is 5,400kg/day. Unit solid waste generation rate from small store is $2.03kg/person{\cdot}day$, and solid waste total are 25,101kg/day. Therefore, this show that total wastes are 30.50kg from downtown and commercial area. Solid waste quantity from Industrial area (Factory region) is 8.5ton and in case of school and hospitals are 7.2kg/day and 3.0kg/day. Solid waste amount from Institutional is 6.6kg/day. Food wastes were eliminated from municipal solid wastes as standard 63.4ton/day, and combustible wastes were 126.9ton/day. If it schedule about 5 years (by 2006) as durable year for food wastes treatment plant, it is expected 42.5ton/day for treatment capacity. We can judge that it is effective to be set 2 lines equipment ${\times}25ton/day$ as treatment ability under considering unexpected working condition such as any repair, trouble and an electrical load. If it schedule about 10 years (by 2011) as durable year for food wastes treatment plant, it is expected 150 ton/day for treatment capacity. We can conclude that it is effective to be set 2 lines equipment ${\times}80ton/day$ as treatment ability under considering working condition such as low loaded operating and the repair for incineration.

  • PDF

Effect of Waste Energy Recovery on SUDOKWON Landfill Gas Generation (폐기물 에너지화가 수도권매립지 매립가스 발생량에 미치는 영향)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.942-948
    • /
    • 2010
  • To predict the potential reduction of $CH_4$ by recovering several types of wastes as of reusable energy sources like RDF, the $CH_4$ emission for each type of waste from Landfill Site 3 of SUDOKWON Landfill was estimated for the period of 2017 to 2024. Without any recovering effort on types of wastes being disposed of at the Landfill, there are producing a total of $526{\times}10^6\;Nm^3$ of $CH_4$; municipal waste of $337{\times}10^6\;Nm^3$, construction waste of $178{\times}10^6\;Nm^3$, and facility waste of $11{\times}10^6\;Nm^3$. It composed of 41.5% to that observed from 2002 to 2009. With properly retrieved by MT(Mechanical Treatment), it released a total of $158{\times}10^6\;Nm^3$ $CH_4$; $127{\times}10^6\;Nm^3$, $28{\times}10^6\;Nm^3$, and $4{\times}10^6\;Nm^3$, respectively. Additionally, when biologically degradable residues can be fully treated by MBT (Mechanical & Biological Treatment) system, the total amount of $CH_4$ emitted from the site will be lowered down as low as $115{\times}10^6\;Nm^3$, which is comparably lower showing only 21.8% to that for without any energy recovery practice. Futhermore, it is far less showing 9.1% to that obtained from 2002 to 2009. It can be decided that predictable amount of $CH_4$ emission reduced could be successfully accomplished and enhanced through ways of energy recovery efforts such as further scale adjustment of LFG treatment capacity in association with currently implemented practices in the landfill site.