• Title/Summary/Keyword: 생태적수질정화비오톱

Search Result 5, Processing Time 0.019 seconds

The Effect of Ecological Restoration and Water Purification of Ecological Fish-way and Floodplain Back Wetland Created as Sustainable Structured Wetland Biotope at Maeno Stream (매노천에서 생태적수질정화비오톱(SSB)으로 창출된 생태어도 및 홍수터 배후습지의 생태계 복원과 생태적 수질정화효과)

  • Byeon, Chan-Woo;Kim, Yong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.508-523
    • /
    • 2017
  • This study monitored the changes before and after restoration of ecological stream focusing on the places which are applied Sustainable Structured wetland Biotop (SSB) system and ecological Fish-way for restoration of Maeno stream. A total of 11 species and 191 individuals of fishes were founded out which were not verified inhabitation before restoration at SSB wetlands. Especially, it was could identified that micro habitat and healthy Fish-way was created because the restored target species, Microphysogobio yaluensis and Iksookimia koreensis were identified that habitation was monitored in SSB wetland. Amphibian have been restored to a number of Rana nigromaculata found in and around wetlands at the time of the third survey, which is highly active after restoration. Specified endangered species class 1 and natural monuments designated by the Ministry of Environment, Lutra lutra lutra, as a Mammalian, uses the wetlands and ecological Fish-way as habitat areas, and the his habitat is restored. In the case of Flora, vascular plants emerging in the survey area were increased to 7 and 13 species before restoration and 15 and 19 species directly after restoration, and 22 species and 33 species after restoration. Vegetation after restoration was found to be a basic producer of various ecosystems and a plant community that contributes to the purification of water quality such as Phragmites japonica communities. As the result of water quality monitoring, the average of treatment efficiencies were BOD 64.3%, T-N 47.2%, T-P 80.7%. Successful treatment of the nonpoint pullution source, which is a limiting factor to disturb the ecosystem, creatively restored the target species in the water quality class I, II.

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea - (하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

Water Purification and Ecological Restoration Effects of the Keumeo Stream Sustainable Structured wetland Biotop (SSB) System Established on the Floodplain of Kyungan Stream (경안천 고수부지에 조성한 금어천 생태적수질정화비오톱 시스템의 수질정화 및 생태복원 효과)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.23-35
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was constructed on the floodplain of Kyungan stream in December, 2006. It purifies polluted water of Keumeo stream which flows into the stream. Water were sampled once a month at inlet and outlet from December, 2007 to December, 2008. $BOD_5$, SS, T-N and T-P were analyzed. Plant and fish species of the system were monitored twice during the period. Average influent and effluent BOD5 concentration was 6.2 and 2.2 mg/L, respectively and BOD5 removal was 50.8%. SS concentration of influent and effluent was averaged 10.1mg/L and 1.5mg/L, respectively and SS abatement amounted to 77.0%. Average influent and effluent T-N concentration was 4.9mg/L and 2.9 mg/L, respectively and T-N retention was 50.8%. T-P concentration of influent and effluent was averaged 0.386mg/L and 0.107mg/L, respectively and T-P removal amounted to 77.0%. Twenty two plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. Dominant plant species were in the following order; Phragmites communis > Typha latifolia > Iris pseudoacorus > Persicaria thunbergii. Five families and 15 species of fish were observed in the system including Chinese minnow (Moroco oxycephalus) which inhabits in clean water. Six more fish species were monitored in the system compared with ones living in Kyungan stream. Amphibia and reptiles accounted for 11 species of 4 orders and 7 families including Korean Salamander (Hynobius leechi) which also lives in cleanwater.

A study on ecological reprocessing and creation of biotope by reuse of treated waste water and nonpoint pollution source of stream (하수처리수와 하천 비점오염원을 이용한 생태적 재처리 효과와 생물 서식처 창출 방안 - 왕포천 생태적수질정화비오톱(Sustainable Structured wetland Biotop) 시스템 사례를 중심으로 -)

  • Byeon, ChanWoo;Lee, JongnChan
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.374-383
    • /
    • 2019
  • The Wangpo stream located in the Buyeo-gun was a small stream with both low water quality and quantity due to the cultivated land and settlement area through the stream. In order to restore ecosystem, the Sustainable Structured wetland Biotop system was applied to treat 1,500 to 7,000 ㎥/d amount of effluent water pumped from the Buyeo sewage treatment plant facility as well as inflowed from nonpoint pollution source of Wangpo stream. As a result of continuous monitoring for 2 years from 2016 to 2018 after completing restorative construction, the average BOD5 as an index of organic pollution was 7.3 mg/L and the average effluent concentration became 2.1 mg/L, showing an improvement by 71.2%. The average inflow concentration of T-N was 7.953 mg/L and the average outflow concentration was 3.379 mg/L, showing 57.5% of improvement. The average inflow concentration of T-P was 0.177 mg/L and the average outflow concentration was 0.052 mg/L, showing about 70.7% improvement. The results of ecological monitoring after creating biotope by reuse of treated waste water and nonpoint pollution source of the Wangpo Stream are as follows. The plant taxa founded in water SSB(Sustainable Structured wetland Biotop) system of the Wangpo Stream was total 41 species in 21 families, showing a higher proportion of naturally introduced plant than that of artificially planted species. In case of other terrestrial animals, both amphibian and reptile group were confirmed as 3 species in 6 families, avian group was 25 species of 15 families, and mammal group observed 5 species in 5 families, respectively. All species have been created and enhanced through purified water inhabited in the SSB(Sustainable Structured wetland Biotop) system as a treatment wetland, eventually migrating to the Wangpo Stream.