• Title/Summary/Keyword: 생태저류지

Search Result 43, Processing Time 0.029 seconds

Design Practice of Bio-Retention for SS management at Industrial Area (공업지역에서의 SS관리를 위한 생태저류지 설계방안)

  • Choe, BoGyeong;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.446-446
    • /
    • 2015
  • 본 연구에서는 공업지역의 비점오염저감시설을 설계하는 방안이 제안된다. 처리대상구역의 SS 배출부하량은 최근 국립환경과학원에서 제안하고 있는 원단위를 기반으로 산출된다. SWMM을 이용하여 처리대상구역의 SS 배출부하량을 모의한 뒤, 비점저감시설로서 생태저류지를 설치하여 설계용량에 따른 비점저감효과가 정량화된다. 다양한 모의결과를 바탕으로 생태저류지 설계용량에 따른 SS의 삭감대상부하비가 유도되며, EPA 기준에 따른 생태저류지의 SS 저감효율이 산정된다.

  • PDF

Discussion on Hydrological and Hydraulic Operation in Design for Construction of Washlands (천변저류지 조성계획에서 수문 및 수리적운영에 관한 고찰)

  • Ahn, Tae-Jin;Kim, Kyung-Sub;Kang, In-Woong;Kim, Bok-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.956-960
    • /
    • 2007
  • 천변저류지의 운영은 홍수기와 평상시 운영으로 구분된다. 본류하천의 홍수저감을 위한 홍수시 저류지 운영을 단기적 운영이라 한다면, 평시 저류지의 수량 관리와 같은 평시 저류지 운영은 장기적 운영이라 할 수 있다. 단기적 운영을 통하여 홍수후 저류지내 퇴적된 토사는 계획홍수조절용량을 감소시킬 뿐만 아니라 평시 저류지내 생태계에 영향을 미친다. 장기적 운영을 위한 평시 저류지내 수위는 저류지내 수질, 생태, 조경, 친수활동 등에 영향을 미친다. 또한 평시 저류지 수위부터 홍수시 수위까지 영역에 관한 수문, 생태, 친수공간, 조경 등의 고려가 필요하다. 본고에서는 천변저류지 조성 계획시 홍수저감, 유입토사 및 평시운영을 위한 수리 및 수문학적 설계기준에서 검토할 내용을 제시하고자 하였다.

  • PDF

An Analysis of the Outflow reduction effect of Bio-retention in Small watershed during Short-term rainfall (단기 강우 시 소규모유역에서 생태저류지의 유출 저감효과 분석)

  • Cheon, Jong-hyeon;Kim, Jae-moon;Jang, Young-su;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.434-442
    • /
    • 2019
  • Low Impact Development(LID) techniques has been attracting attention as a countermeasure to solve frequent flood damage in urban areas. LID is a techniques for returning to the natural hydrological cycle system by infiltrating the runoff from the impervious surface into the soil. The Bio-retention, one of the LID element technology has outflow reduction effect by reserving and infiltrating storm water runoff from watersheds. Recently, a number of studies have been carried out as interest in the reduction of storm water runoff and non-point pollutants in Bio-retention has increased. However, quantitative analysis on the outflow reduction of Bio-retention applied to small watershed is insufficient. In this study, Bio-retention model was constructed in a small watershed using K-LIDM which is capable of hydrologic analysis. When the storage capacity was increased or dividing the Bio-retention and watershed, the outflow reduction effect was 20% according to the storage capacity increase and 5~15% in the distributed Bio-retention system. The results of this analysis will be used as the basic data of future Bio-retention research related to watershed characteristics, vegetation type and soil condition.

Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle (도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정)

  • Lee, Okjeong;Choi, Jeonghyeon;Lee, Jeonghoon;Kim, Sangdan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • In this study, a design strategy is proposed to restore the distorted urban water cycle to the natural water cycle through the LID facility. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. A part of the Noksan National Industrial Complex in Busan was selected as the study area and EPA SWMM was constructed to simulate long-term stormwater for various land use scenarios and LID facility design capacity. In the case that the study area was assumed to be a forest area or an agricultural area before urban development, it was found that it was necessary to allocate 7.3% or 5.5% of the impervious area to the area of the bio-retention in order for the flow duration curve to remain the same as before urban development. As a result of the sensitivity analysis of the bio-retention design capacity according to regional rainfall characteristics, the design capacity of 3.8~5.5% of impervious area is needed for the development of agriculture area. Therefore, it can be seen that the optimum capacity can be significantly different according to regional rainfall characteristics. On the other hand, as a result of analyzing the sensitivity of the design capacity according to the variation of the depth of each layer constituting the bio-retention and the size of contributing catchment area, the sensitivity of the optimal design capacity with respect to the design specifications of the bio-retention and the size of contributing catchment area was not significant.

Analysis of Flood-Control Effects of Side-weir Detention Basin Under Submerged flow (불완전 횡월류 흐름 발생시 강변저류지의 홍수조절효과 분석)

  • Kim, Seo-Jun;Kim, Sang-Hyeok;Byeon, Hyeon-Hyeok;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.73-73
    • /
    • 2012
  • 강변저류지는 제방의 일부분을 낮추어 홍수량을 저류하는 방식으로 홍수기에는 홍수조절효과를 얻을 수 있고, 비홍수기에는 습지, 농경지, 생태공원 및 스포츠 시설 등으로 활용할 수 있는 친환경적 치수 구조물이다. 강변저류지의 홍수조절효과는 강변저류지 설치 전 후의 첨두 홍수량 또는 첨두 홍수위 차이로 정의할 수 있고, 이것의 정확한 산정을 위해서는 횡월류부 흐름형태에 따른 횡월류량 계산이 필요하다. 횡월류부의 흐름은 하도와 저류지의 수위에 따라 완전 횡월류 흐름과 불완전 횡월류 흐름으로 분류할 수 있다. 완전 횡월류의 경우 위어의 형상과 하도의 흐름에 따라 하나의 유량계수가 결정되는 반면, 저류지의 수위가 월류턱 보다 높아 흐름에 저항을 주는 불완전 횡월류 흐름의 유량계수는 하도와 저류지의 수위변화에 따라 변화한다. 이에 본 연구에서는 1차원 부정류 수치모형인 HEC-RAS를 이용하여 완전 횡월류만 발생하는 경우와 불완전 횡월류도 발생하는 경우에 대한 강변저류지 홍수조절효과를 분석하고자 한다.

  • PDF

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves (자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법)

  • Lee, Okjeong;Jang, Suhyung;Kim, Hongtae;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2016
  • LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

Determining the Locations of Washland Candidates in the Four Major River Basins Using Spatial Analysis and Site Evaluation (공간분석 및 현장조사 평가 기법을 활용한 4대강 강변저류지 조성 후보지 선정)

  • Jeong, Kwang-Seuk;Shin, Hae-Su;Jung, Ju-Chul;Kim, Ik-Jae;Choi, Jong-Yun;Jung, In-Chul;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.44-54
    • /
    • 2010
  • In this study, a comprehensive exploration and evaluation of washland candidate locations by means of field monitoring as well as spatial analysis in six major river system (Han, Nakdong, Nam, Geum, Youngsan, and Seomjin Rivers). Washland(in other words, river detention basin) is an artificial wetland system which is connected to streams or rivers likely to riverine wetlands. Major purpose of washland creation is to control floodings, water supply and purification, providence of eco-cultural space to human and natural populations. Characteristics and functions of riverine wetlands can be expected as well, thus it is believed to be an efficient multi-purpose water body that is artificially created, in terms of hydrology and ecology. Geographical information and field monitoring results for the washland candidate locations were evaluated in 2009, with respect to optimal location exploration, ecosystem connectivity and educational-cultural circumstances. A total of $269\;km^2$ washland candidate locations were found from spatial analysis (main channel of Rivers South Han, 71.5; Nakdong 54.1; Nam, 2.3; Geum, 79.0; Youngsan 46.4; Seomjin 15.7), and they tended to be distributed in mid- to lower part of the rivers to which tributaries are confluent. Field monitoring at 106 sites revealed that some sites located in the Rivers Nam and Geum is appropriate for restoration or artificial creation as riverine wetlands. Several sites in the Nakdong and Seomjin Rivers were close to riverine wetlands (e.g., Upo), habitats of endangered species (e.g., otters), or adjacent to educational facility (e.g., museums) or cultural heritages (e.g., temples). Those sites can be utilized in hydrological, ecological, educational, and cultural ways when evidence of detailed hydrological evaluation is provided. In conclusion, determination of washland locations in the major river basins has to consider habitat expansion as well as hydrological function (i.e. flood control) basically, and further utility (e.g. educational function) will increase the values of washland establishment.

Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation (도시 내수침수 저감을 위한 간선저류지 적용성 분석)

  • Lee, Sung Ho;Kim, Jung Soo;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • The flood prevention capacity of drainage facilities in urban areas has weakened because of the increase in impervious surface areas downtown owing to rapid urbanization as well as localized heavy rains caused by climate change. Detention can be installed in trunk sewers and linked to existing drainage facilities for the efficient drainage of runoff in various urban areas with increasing stormwater discharge and changing runoff patterns. In this study, the concept of detention in trunk sewers, which are storage facilities linked to existing sewer pipes, was applied. By selecting a virtual watershed with a different watershed shape, the relationship between the characteristic factors of detention in the trunk sewer and the design parameters was analyzed. The effect of reducing stormwater runoff according to the installation location and capacity of the reservoir was examined. The relationship between the installation location and the capacity of the detention trunk sewer in the Dowon district of the city of Yeosu, South Korea was verified. The effects of the existing water runoff reduction facility and the detention trunk sewer were also compared and analyzed. As a result of analyzing the effects of reducing internal inundation, it was found that the inundation area decreased by approximately 66.5% depending on the installation location of the detention trunk sewer. The detention trunk sewer proposed in this paper could effectively reduce internal inundation in urban areas.