• Title/Summary/Keyword: 생체 모의매질

Search Result 4, Processing Time 0.024 seconds

Tissue Mimicking Phantom for Visualization of Temperature Elevation Caused by Ultrasound (초음파에 의한 온도상승 가시화용 생체 모의매질)

  • Jung, Ji-Hee;Kim, Jung-Soon;Ha, Kang-Lyeol;Kim, Moo-Joon;Cao, Yonggang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.291-299
    • /
    • 2014
  • To probe the temperature elevation effect caused by ultrasound, a tissue mimicking phantom was newly suggested. A carrageenan gel was adopted to realize not only the required transparency for visualization but also acoustic characteristics similar to human tissue. To visualize the temperature elevation inside phantom, thermochromic film with a critical temperature of discoloration was introduced. Acoustic characteristics of the tissue mimicking phantom were examined when the concentrations of carrageenan and sucrose changed. As the results, the attenuation coefficient of the phantom could be controlled in the range of 0.44~0.49 dB/cm/MHz, and the acoustic impedance in the range of 1.52~1.77 Mrayls. We could control the acoustic characteristics of the phantom by different concentration of carrageenan and sucrose, and it was possible to examine the temperature elevation caused by ultrasound in the phantom. The suggested method was verified by noninvasively visualizing the temperature elevation due to planar and focused ultrasound using the fabricated phantom.

Measurement of induced current in human body under 60 Hz magnetic field (60 Hz 자기장 하의 생체 유도전류 측정)

  • Kim, Eung-Sik;Myung, Sung-Ho;Min, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.78-79
    • /
    • 2005
  • 60 [Hz] 전자기장의 생체 영향은 오랜 연구가 있었지만 아직도 논란이 많은 분야이다. 본 연구에서는 인체 팬텀 모델을 사용하여 1-3[G]자계인가 시 유도 전류를 측정하였다. 또한 2차윈 다매질장의 실험모델을 제작하여 유도전류 측정하고 이를 해석해와 비교를 통해 정확도를 검토 하였다. 또한 인체 단면을 2차원 임피던스법을 이용하여 계산한 결과와 이의 팬텀 모델 제자 후 전류를 측정한 간과 비하였다. 마지막으로 인체를 실물에 가깝게 하기위해 3차원 다매질장의 모델로 모의하여 장기, 폐, 간, 실장, 뇌 등의 구성 요소에 각각의 전도도를 부여한 인체 팬텀 모델을 제작해 유도 전류를 측정하였다.

  • PDF

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Thermal distribution change in polyvinyl alcohol gel caused by focused ultrasound (폴리비닐알코올 젤의 집속초음파에 의한 온도분포 변화)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.576-584
    • /
    • 2020
  • In order to obtain basic information for using polyvinyl alcohol (PVA) gel as a tissue mimicking phantom for temperature visualization, the temperature change characteristics due to the focused ultrasound were examined for different concentration of PVA. To obtain the basic acoustic characteristics, the speed of sound, the attenuation coefficient, and the density depending on the PVA concentration were measured, and the thermodynamic characteristics, such as thermal conductivity and heat capacity, were measured. The range of temperature rising in the vicinity of the focal point due to the focused ultrasound was observed using a thermochromic film that changes color at 30 degree or more, and the discolored area was obtained by image processing of the recorded image. As the concentration of PVA increases in the given range of 2 wt% ~ 16 wt%, the area that rises above 30 degree inside the gel increases linearly. It is confirmed that the discolored area increases as the power applied to the focused ultrasonic transducer increases. These results showed good agreement with the simulation results using the finite element method.