• Title/Summary/Keyword: 생체모방

Search Result 230, Processing Time 0.034 seconds

Analysis of Effective Anisotropic Elastic Constants and Low-Velocity Impact of Biomimetic Multilayer Structures (생체구조를 모방한 다층복합재료의 이방성 유효탄성계수 및 저속 충격 해석)

  • Lee, Jong-Won;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1245-1255
    • /
    • 2012
  • Effective elastic constants of biomimetic multilayer structures with hierarchical structures are evaluated based on the potential energy balance method. The effective anisotropic elastic constants are used in analyzing low-velocity impact of biomimetic multilayer structures consisting of mineral and protein. It is shown that displacements of biomimetic multilayer structures strongly depend on the volume fraction of mineral and hierarchical level. The effect of the volume fraction of mineral and hierarchical level on the contact force and stresses at the impact point are also discussed.

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

Influence of Ligand on Oxidation of Cyclohexane in the Biomimetic System (생체모방계에 의한 시클로헥산 산화반응에서 리간드의 영향)

  • Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.202-205
    • /
    • 2005
  • The effects of ligands on reactivity under GoAgg oxidation system have been studied. Picolinic acid containing carboxylic acid showed the most excellent activity among various ligands. Also, Picolinic acid of ortho position carboxylic group in pyridine ring largely increased reaction rates in the GoAgg oxidation systems. From these results, we proposed the new mechanism on the GoAgg oxidation using ligands having carboxylic group at ortho position.

Study on In-plane Strains of Electro-Active Paper (생체 모방 종이 작동기의 면내 변형에 관한 연구)

  • Jung, Woo-Chul;Kim, Jae-Hwan;Lee, Sun-Kon;Bae, Seung-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.727-730
    • /
    • 2005
  • Cellulose based Electro-Active Papers (EAPap) is very promising material due to its merits in terms of large bending deformation, low actuation voltage, ultra-lightweight, and biodegradability. These advantages make it possible to utilize applications, such as artificial muscles and achieving flapping wings, micro-insect robots and smart wall papers. This paper investigates the in-plane strains of EAPap under electric fields, which are useful for a contractile actuator application The preparation of EAPap samples and the in-plane strain measurement system are explained, and the test results are shown in terms of electric field, frequency and the oriental ions of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap material, this in-plane strain may be useful for artificial muscle applications.

  • PDF

전기활성 고분자 액추에이터

  • Gu, Jong-Min;Park, Hyeon-Cheol;Gwon, Tae-Hun
    • Journal of the KSME
    • /
    • v.56 no.6
    • /
    • pp.46-49
    • /
    • 2016
  • 이 글에서는 생체 모방 분야에서 인공 근육 액추에이터의 유력한 소재로 주목받고 있는 전기활성 고분자 액추에이터에 대한 소개와 최근 연구 동향에 대해 소개하고자 한다.

  • PDF