• Title/Summary/Keyword: 생체모방공학

Search Result 52, Processing Time 0.017 seconds

Research on the Manufacturing Technology for a PDMS Structure-Based Transpiration Generator Using Biomimetic Capillary Phenomenon (생체모방 모세관 현상을 이용한 PDMS 구조체 기반 증산발전기 제조기술 연구)

  • Seung-Hwan Lee;Jeungjai Yun;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Yong-Ho Choa;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.268-275
    • /
    • 2023
  • The demand for energy is steadily rising because of rapid population growth and improvements in living standards. Consequently, extensive research is being conducted worldwide to enhance the energy supply. Transpiration power generation technology utilizes the vast availability of water, which encompasses more than 70% of the Earth's surface, offering the unique advantage of minimal temporal and spatial constraints over other forms of power generation. Various principles are involved in water-based energy harvesting. In this study, we focused on explaining the generation of energy through the streaming potential within the generator component. The generator was fabricated using sugar cubes, PDMS, carbon black, CTAB, and DI water. In addition, a straightforward and rapid manufacturing method for the generator was proposed. The PDMS generator developed in this study exhibits high performance with a voltage of 29.6 mV and a current of 8.29 µA and can generate power for over 40h. This study contributes to the future development of generators that can achieve high performance and long-term power generation.

Biomimetic Analysis on the Spider Silk Apparatus for Designing the Nanofiber-spinning Nozzle (나노섬유 방사노즐 설계를 위한 거미 실크 방적장치의 생체모사 분석)

  • Moon, Myung-Jin;Kim, Hoon;Park, Jong-Gu
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.67-76
    • /
    • 2012
  • The biomimetic approach on the cuticular spinning nozzles of the major ampullate silk glands in the golden-web spider Nephila calvata has been attempted using various visualizing techniques of light and electron microscopes to improve the design of spinning nozzle for producing synthetic nanofibers spun from electrospinning apparatus. The major ampullate spigot which has the most effective nozzle system to produce nanofibers for dragline silk with high strength and elasticity is connected via the bullet type spigot on anterior spinneret with flexible terminal segment. The excretory duct which transports the liquid silk feedstock from ampulla to spigot is divided into 3 limbs by loops back on itself to form an S-shape morphology that is bundled in connective tissue. Final diameter of the nanofibers at nozzle was dramatically reduced by gradual narrowing of duct cuticle less than 10 times comparing to its original size of funnel region. Moreover, the funnel has a characteristic cuticular organization with porous microstructure which seems to be related to water removal from feedstock of silk precursors. High magnification electron micrographs also reveal the presence of the spiral grooves on the surface of the cuticular intima near the valve which presumed to reduce friction during rapid flow of liquid silk.