• Title/Summary/Keyword: 생장 저해

Search Result 428, Processing Time 0.028 seconds

Herbicidal activity and molecular design of benzotriazole derivatives (Benzotriazole계 유도체의 제초활성과 분자 설계)

  • Sung, Nack-Do;Park, Hyeon-Joo;Park, Seung-Heui;Pyon, Jong-Yeong
    • Applied Biological Chemistry
    • /
    • v.34 no.3
    • /
    • pp.287-294
    • /
    • 1991
  • The relationships between the quantitative structure of benzotriazoles and their post-emergence growth inhibiting activity(pI50) against Oryzae sativa L. and Echinochloa crus-galli were investigated using a generalized quantitative structure activity relationships (QSAR). According to the QSAR analysis, the free radical parameter (ER) is a very important factor and the growth inhibiting activity values showed parabolic relation to ER parameter of para-substituents(X). The activity of (3) was superior to those of (4) and (3b) is selected as the most highly effective compound. The optimal values of ER parameter of the growth inhibiting activity aganist E.crus-galli are ER(3)=0.52andER(4)=0.15, respectively. From the result of molecular design, the substituents(X) of electron withdrawing properties and ER parameter of optimal value(0.52) were most desirable for high activity of the benzotriazoles. And in view of this, benzotriazoles may also be effective in blocking the photosynthetic electron transfer.

  • PDF

A Study on the Copper Tolerance of Herbaceous Plants (구리 내성 식물에 관한 연구)

  • Kim, Seong-Hyeon;Lee, In-Suk
    • The Korean Journal of Ecology
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • This research was investigated to prepare basic data in a study on the copper tolerance of herbaceous plants through the growth rate and the elimination rate dependent on Cu concentration of 6 species; Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae, We examined the germination rate, root and shoot growth of seedling and fresh biomass of 6 species (Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae) painted to Cu contaminated soil (50, 100, 200, 300-CuCl₂/㎏) and control for 14 days. The germination rate of H. annuus, E. frumentancea and C. communis were not affected by Cu concentration. However, root and shoot growth of H. annuus was about 7% of control and the biomass was 35% of control at 300 ㎎-CuCl₂/㎏. E. frumentancea and C. communis that showed good growth rate at higher Cu contaminated soil (>200 -CuCl₂/㎏), were the most tolerant plant to Cu concentration. Especially, E. frumentancea eliminated over 30% of Cu in soil and the amount of Cu uptake increased with increasing Cu concentration; 1,020㎎ Cu per 1 ㎏ of soil at 300 ㎎-CuCl₂/㎏. From these results, we concluded that E. frumentancea would be used for phytoremediation.

Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid (Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해)

  • Yum, Su-Jin;Kim, Seung Min;Yu, Yeon-Cheol;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.

Influences of Polycyclic Aromatic Hydrocarbons on Soybean and Rice Growth (다환방향족탄화수소가 콩과 벼의 생육에 미치는 영향)

  • Kim, Young-Ju;Shim, Doo-Bo;Song, Sun-Hwa;Kim, Seok-Hyeon;Chung, Jong-Il;Kim, Min-Chul;Chung, Jeong-Sung;Kim, Hyung-Gon;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) are a group of ubiquitous hazardous pollutants derived from fossil fuel, various combustion sources and pyrolysis of a wide range of plastics. Because PAHs can be uptake into crop plants, the inhibitory effects on rice and soybean plants were examined in greenhouse and growth chamber experiment. Soil-applied PAHs (phenanthrene of 0, 10, 30, 100 ppm) slightly reduced the plant height and dry weight both in transplanted rice and soybean plant. The inhibitory effect on growth was greater in soybean than rice. Plant height of soybean plants treated by 100 ppm was 58.9 cm and this value was 87.2% of untreated plant. In rice plant, the plant height was less inhibited (96.0% of untreated plant) by 100 ppm at 80 days after treatment (DAT). However, leaf chlorophyll content and chlorophyll fluorescence were less inhibited by PAHs at late growth stage (after heading) although the photosynthesis-related parameters were slightly inhibited from 20 DAT to 70 DAT. In agar medium experiment with infant seedlings, inhibition of seedling length and fresh weight by phenanthrene at 100 ppm were greater as compared to the experiment with adult plant in pot. Seedling length and fresh weight were reduced by 54.2% and 33.3% for rice and 27.9% and 13.2% for soybean, respectively. The results reflected that PAHs were more inhibitory during juvenile stage than adult stage and more inhibitory to rice plant than soybean for juvenile stage.

Effect of Water-Extracts from Sludge Compost on Seed Germination (퇴비의 부숙 과정 중 추출물이 종자 발아력에 미치는 영향)

  • Kang, Sang-Jae;Lee, Chang-Hee;Seo, Sang-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.407-414
    • /
    • 2007
  • In order to evaluate the physicochemical properties of sludge compost and to identify the effects water-extracts from sludge compost in 2, 6, 8, 12 weeks of decomposing process on seed germination and root elongation in cabbage, lettuce, soybean and barley plants was investigated. The content of total nitrogen in sludge compost increased slightly in 6 weeks decomposing process, and then decreased gradually. Organic matter content decreased continuously overall decomposing process. As decomposition was processing, pH of sludge compost decreased slightly, and EC increase within 6 weeks decomposing process, and then decreased. The content of nitrogen in water-extracts from sludge compost increased within 8 weeks decomposing process and decreased in 12 weeks decomposing process. The content of ammonium nitrogen was similar with that of total nitrogen, and the ratio of ammonium and nitrate increased within 8 weeks, and then decreased. Cation content and EC decreased the late of decomposing process and pH didn't change. The water-extracts from sludge compost during decomposing process inhibited seed germination and root elongation in cabbage (Brassica campestris), lettuce (Lactuca sativa), barley (Hordeum vulgare) and soybean (Glycine max). The inhibition of root elongation in cabbage was greater than that of relative seed germination, whereas relative seed germination in lettuce was more inhibit than root elongation. Relative seed germination and root elongation in soybean were inhibited slightly, but those of in barley was inhibited strongly. In this study, we would identify the effects of water-extracts from sludge compost on seed germination and root elongation was different to the species of seed. The inhibition of seed germination and root elongation treated with the water-extracts which extracted from sludge compost in the early stage of decomposing process was greater than that of in the late stage of decomposing process.

Impact of Physical, Chemical and Biological Factors on Lily (Lilium longiflorum cv. Georgia) Pollen Growth and GUS Expression Via Agro-infiltration (물리적, 화학적, 생물적 요인에 의한 백합 (Lilium longiflorum cv. Georgia) 화분의 생장 및 Agro-Infiltration을 이용한 GUS 발현)

  • Park, Hee-Sung
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.279-283
    • /
    • 2004
  • To lily (Lilium longflorum cv. Georgia) pollen, impacts by some physical, chemical and biological factors were examined in respects of its growth and transient gene expression via agro-infiltration. Rolling movement in liquid medium or vacuum pressure during Agro-infiltration was regarded as a impact that should be minimized for normal pollen growth. Pollen growth was maintained well in relatively broad range of temperature (19 to 27C) or pH (5.0 to 8.0). Chemical factors such as cefotaxime (up to 300mg/L), acetosyringone (up to 800 μM) and syringealdehyde (up to 800 μM) did not show any harmful effects but kanamycin severely did even at concentration as low as 25mg/L in some cases. For GUS gene expression, acetosyringone at 200 to 400 μM slightly improved the efficiency while syringealdehyde did not. Brief agro-infiltration followed by 18 hr of co-incubation of pollen along with Agrobacterium was suggested as a condition basically required for the transient expression system using lily pollen regardless of the presence of acetosyringone.

The Optimal Culture Conditions and Antifungal Activity of Culture Extract from Oudemansiella mucida (끈적긴뿌리버섯(Oudemansiella mucida)의 최적배양조건 및 배양 추출액의 항균작용에 관한 연구)

  • Choi, Mi-Ryue;Cho, Hae-Jin;Lee, Jae-Seong;Kim, Hye-Young;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Oudemansiella mucida, an edible and medicinal mushrooms belonging to Tricholomataceae of Basidiomycota, has been known to produce antifungal substances to inhibit the mycelial growth and spore germination of the plant pathogenic fungi. To produce good amount of antifungal substances from culture media, the optimal culture conditions of O. mucida were investigated. The most favorable conditions for the mycelial growth were 25C and pH 5 in potato dextrose agar. The most favorable carbon and nitrogen sources promoting mycelial growth were maltose and calcium nitrate, respectively. The optimum C/N ratio was about 20 : 1 in case that 3% glucose was supplemented to the basal medium as a carbon source. The optimal mycelial growth of O. mucida was found in the Hennerberg medium. The crude extract from submerged culture of potato dextrose broth exhibited inhibition of mycelial growth of Colletotrichum acutatum, Botrytis cinerea and Pyricularia oryzae but, fungicidal activity is not good enough to compared with commercially available fungicides tested. Therefore, the antifungal substances extracted from submerged culture of O. mucida might have a potential to be used for biocontrol agent of fungal diseases of plants.