• Title/Summary/Keyword: 생육중 침적

Search Result 12, Processing Time 0.041 seconds

배추의 생육단계별 엽면처리시 $^85Sr,^103Ru,^134Cs$의 작물체 오염경로 분석

  • 임광묵;최용호;김상복;박효국;이원윤
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.639-644
    • /
    • 1998
  • 온실내에서 $^{85}$ Sr, $^{103}$ Ru, $^{134}$ Cs의 혼합용액을 배추의 생육중 다섯 차례에 걸쳐 분무기를 이용하여 엽면 처리하고 오염경로를 해석하였다. 작물체에 의한 차단계수는 핵종간에 차이없이 처리시기가 수확기에 가까울수록 증가하여 최고 약 0.9에 달하였다. 작물체에 침적한 핵종의 수확시 잔류율은 처리시기에 따라 $^{85}$ Sr가 16~58%, $^{103}$ Ru이 15~73%, $^{134}$ Cs가 33~64%의 범위로 생육전기 처리 시에는 $^{134}$ Cs가, 후기 처리시에는 $^{103}$ Ru이 가장 높았다. 강우처리에 의해 수확시 핵종농도가 비교적 크게 감소됨을 확인하였다. 수확된 배추의 겉잎을 제거함으로써 배추내 핵종농도를 효과적으로 낮출 수 있다는 것이 입증되었다. 본 연구결과는 배추의 생육중 사고침적시 배추내 핵종농도 예측 및 대책 수립에 활용될 수 있다.

  • PDF

Oceanographic Conditions in Relation to Laver Production in Kwangyang Bay, Korea (광양만의 김 생산과 양식장환경과의 관계에 대하여)

  • HONG Jae-Sang;SONG Choon Bok;KIM Nam-Gil;KIM Jong Man;HUH Hyung Tack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.237-247
    • /
    • 1987
  • The present study deals with the physico-chemical and meteorological conditions in Porphyra-cultivation ground to determine the relationship between laver production and its environmental factors in Kwangyang Bay from January to April in 1986. As a result, major environmental factors which are thought to have a great influence upon the poor harvest during the cultivation period are as follows; 1) the excessive rainfall in the beginning of cultivation period 2) the accumulation of suspended matters on the thallus of laver 3) the decrease of current velocity and the stagnation of the water in the cultivation ground.

  • PDF

Underground Migration of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ Deposited during the Growth of Major Crop Plants (주요 작물의 생육중에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$ 의 지하이동)

  • Choi, Yong-Ho;Jo, Jae-Seong;Lee, Chang-Woo;Lee, Myung-Ho;Kim, Sang-Bog;Hong, Kwang-Hee;Choi, Geun-Sik;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 1996
  • Underground migration of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ in paddy and upland conditions was studied through two years' greenhouse experiment. At early and late growth stages of rice, soybean, Chinese cabbage and radish, a mixed solution of the radionuclides was applied to the water or soil surfaces of the culture boxes filled with an acidic loamy-sandy soil for the upper 20cm. Soil was sampled in layers upto $15{\sim}20cm$ down after harvest. Soil concentrations of the radionuclides decreased exponentially with increasing soil depth and more than 80% of the radioactivities remained in top $3{\sim}4cm$. The mobility of the radionuclides decreased in the order of $^{85}Sr>^{54}Mn>^{60}Co{\geq}^{137}Cs$. Downward migrations of the radionuclides were the greatest in rice soil and the lowest in soybean soil which was fertilized with the least amount of N, P and K. Differences in depth profiles between two application times indicate that the amount of daily migration from $0{\sim}1cm$ layer to the lower area decreases with increasing time after deposition. By a simultaneous addition of KCl and lime following the earlier application, downward migration in soybean, Chinese cabbage and radish soils changed little or retarded more or less but that in rice soil accelerated a little.

  • PDF

Deposition Velocity of Iodine Vapor ($(I_2)$) for Radish Plants and Its Root-Translocation Factor : Results of Experimental Exposures (요오드 증기($I_2$)의 무 작물체에 대한 침적속도 및 뿌리 전류계수 : 피폭실험 결과)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Park, Doo-Won;Keum, Dong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • In order to measure the deposition velocity of $I_2$ vapor for radish plants and its translocation factor for their roots, radish plants were exposed to $I_2$ vapor for 80 min. at different growth stages between 29 and 53 d after sowing. The exposure was performed in a transparent chamber during the morning time. Deposition velocities ($ms^{-1}$) were on the whole in the range of $1.0{\times}10^{-4}{\sim}2.0{\times}10^{-4}$ showing an increasing tendency with an increase in the biomass density. The results showed some agreement with existing reports that a higher relative humidity would lead to a higher deposition velocity. The acquired deposition velocities were lower than by factors of several tens than some field measurements probably due to a very low wind speed (about $0.2\;ms^{-1}$) in the chamber. Translocation factors (ratio of the total iodine in the roots at harvest to the total plant deposition), estimated in a more or less conservative way, were $1.3{\times}10^{-3}$ for an exposure at 29 d after sowing and $5.0{\times}10^{-3}$ for an exposure at 53 d after sowing. In using the present experimental data, meteorological conditions and chemical and physical forms of iodine need to be carefully considered.

A Study on Development of Modified Hydroponic System - On the Intermittent Soaking System of Soilless Culture - (새로운 수경재배방식 개발에 관한 연구 -간헐침지식 수경재배시스템에 관하여 -)

  • 양원모;진영욱
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.169-174
    • /
    • 1992
  • This experiment was carried out to investigate the possibility of practical use of intermittent soaking system(ISS) in hydroponicaly growing tomato. There were four treatments which were NFT, Aeroponics, and ISS with 10 and 15 minute soaking intervals. 1. Plant height is highest in NFT, but main root length is longest in ISS. While stem diameter and leaf number were not significantly difference. 2. Fresh and dry weight were heavier in NFT than those of other systems at early growth stage, but the heavier in ISS system, the growth more develop. 3. In 43 days after treatment, the number of flowerlet was largest in aeroponics, and then ISS and NFT in order. Fruit weight per plant was also heaviest in aeroponics. 4. Average yield per plant were 1929.1g in aeroponics, 1475.2g in ISS with 10 minute soaking interval, 1276.2g in NFT and 1084.8g in ISS with 15 minute soaking interval. 5. Average fruit number per plant were 11.0 in aeroponics, 9.7 in NFT, 8.3 in ISS with 15 minute soaking interval, and 7.7 in ISS with 10 minute soaking interval. Average fruit weight were 192.9g in aeroponics, 172.4g in ISS with 10 minute soaking interval, 134.0g in NFT and 126.0g in ISS with 15 minute soaking interval. 6. Average fruit length was longer in aeroponics and ISS with 10 minute soaking interval than in the NFT and ISS with 15 minute soaking interval. Average fruit width was similarly wider in NFT, aeroponics and ISS with 10 minute soaking interval than in ISS with 15 minute soaking interval.

  • PDF

Soil-to-Plant Transfer of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ Deposited during the Growing Season of Potato (감자의 재배기간 중 토양에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$의 작물체로의 전이)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Keum, Dong-Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.105-112
    • /
    • 2008
  • To measure the soil-to-plant transfer factors ($TF_a,\;m^2\;kg^{-1}$-fresh) of radionuclides deposited during the growing season of potato, a radioactive solution containing $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ was applied to the soil surfaces in soil boxes 2 d before seeding and three different times during the plant growth. For the pre-seeding application (PSA), radionuclides were mixed with the topsoil (loamy sand and 5.2 in pH). The plant parts investigated were leaves, stems, tuber skin and tuber flesh. The $TF_a$ values of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ from the PSA were in the ranges of $1.9{\times}10^{-4}{\sim}1.5{\times}10^{-2}$, $1.8{\times}10^{-4}{\sim}7.5{\times}10^{-4}$, $4.0{\times}10^{-4}{\sim}1.6{\times}10^{-2}$, $1.5{\times}10^{-4}{\sim}3.9{\times}10^{-4}$ respectively, for different plant parts. The TFa values from the growing-time applications were on the whole a few times lower than those from the PSA. For $^{54}Mn,\;^{85}Sr$ and $^{137}Cs$, the $TF_a$ values from the early- or middle-growth-stage application were higher than those from the late-growth-stage application, whereas the opposite was true for $^{60}Co$. Leaves and tuber flesh had the highest and lowest $TF_a$ values, respectively, in most cases. The total uptake from soil by the four plant parts was in the range of $0.05{\sim}3.16%$. In the third year following the PSA, the $TF_a$ values of $^{54}Mn,\;^{60}Co$ and $^{137}Cs$ were $11{\sim}25%$, $21{\sim}25%$ and $38{\sim}67%$ of those in the first year, respectively, depending on the plant parts. The present results can be used for estimating the radiological impact of an acute radioactive deposition during the growing season of potato and for testing the validity of relevant food-chain models.

Experimental Studies for Analyzing Direct Contamination Pathway $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru$ and $^{134}Cs$ in Rice (벼에 대한 $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru,\;^{134}Cs$의 직접오염 경로분석 실험)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Park, Hyo-Guk;Lee, Won-Yun;Lee, Chang-Mi
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 2000
  • For analyzing the direct contamination pathway of radionudides in rice plants, a Solution containing $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru$ and $^{134}Cs$ was applied to the aboveground Parts of the between RI application and harvest. Its highest observed value was 0.94. The fractions of the initial plant deposition that remained in rice plants at harvest were in the range of $19{\sim}47%,\;17{\sim}43%,\;19{\sim}42%,\;23{\sim}61%$ and $11{\sim}69%$ for $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru$ and $^{134}Cs$, respectively, when no decay was assumed. The translocation factors of those radionuclides in hulled seeds were in the range of $6.9{\times}10^{-4}3.8{\times}10^{-2},\;3.6{\times}10^{-3}{\sim}1.6{\times}10^{-1},\;5.8{\times}10^{-4}{\sim}3.2{\sim}10^{-2},\;1.6{\times}10^{-4}{\sim}7.6{\times}10^{-3}$ and $3.2{\times}10^{-2}{\sim}2.0{\times}10^{-1}$, respertively, and were highest when they were applied at the stage of active seed development. It was indicated that the remaining percentage and translocation factor would not be greatly affected by the difference in the rain frequency if it is within a factor of 2. These results can be utilzed for predicting the radionuclide concentrations in rice seeds when an accidental deposition of those radionuclides occurs during the rice-growing season.

  • PDF

Effects of KCl and Lime Application on Root Uptake of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ Deposited during Growth of Major Crop Plants (염화칼리와 석회의 동시살포가 주요 작물의 생육중에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$의 뿌리흡수에 미치는 영향)

  • Choi, Yong-Ho;Jo, Jae-Seong;Lee, Myung-Ho;Choi, Geun-Sik;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.245-253
    • /
    • 1995
  • The effects of a simultaneous application of KCl and lime on the root uptake of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ by rice, soybean, Chinese cabbage and radish were investigated through 2 years' greenhouse experiments. At their early growth stages, a mixed solution of the radionuclides was applied to the water or soil surfaces of the culture boxes filled with an acidic loamy-sandy soil for the upper 20cm and $83g/m^2$ of fertilizer KCl and $200g/m^2$ of slake lime were applied to the surfaces. Distribution of radioactivities among plant parts and change in uptake pattern with plant species were not, on the whole, significantly affected by the application. It reduced effectively soil-to-plant transfer factors of $^{85}Sr\;and\;^{137}Cs$ for rice, of all for Chinese cabbage and of $^{54}Mn,\;^{60}Co,\;and\;^{137}Cs$ for radish without their growth inhibition. In rice, $^{85}Sr$ showed the highest decrease $({\sim}60%)$ while, in Chinese cabbage and radish, $^{54}Mn$ did $({\sim}80%)$. The exprimental results can become valuable reference data to establish countermeasures against a radioactive contamination of farm-land during plant growth.

  • PDF

Contamination of Chinese Cabbage with $^{85}Sr$, $^{103}Ru$ and $^{134}Cs$ Related to Time of Foliar Application ($^{85}Sr$, $^{103}Ru$, $^{134}Cs$의 엽면처리 시기에 따른 배추의 방사능 오염)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Park, Hyo-Guk;Lee, Won-Yun;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.219-227
    • /
    • 1998
  • A solution containing $^{85}Sr$, $^{103}Ru$ and $^{134}Cs$ was applied to Chinese cabbage in a greenhouse via foliar spraying at 5 different times during its growth. Interception of the applied activity by plant showed no difference among radionuclides and increased with decreasing time interval between application and harvest. The maximum interception factor observed was 0.87. Percentages of the intercepted activity remaining in the whole leaves at harvest varied $16{\sim}58%$ for $^{85}Sr$, $15{\sim}73%$ for $^{103}Ru$ and $33{\sim}64%$ for $^{134}Cs$, with application time and those for the inner leaves (without 6 outmost leaves) varied $2{\sim}35%$, $0.4{\sim}46%$ and $14{\sim}40%$, respectively. It was demonstrated that rain plays an important role in weathering loss of the activity. Tying the upper end of the plant prior to the last application lowered interception and remaining activity in the inner leaves by factors of $3{\sim}4$. Present results can be referred to in predicting the radionuclide concentration in Chinese cabbage and deciding counter-measures at the time of an accidental release from the nuclear installation.

  • PDF