• Title/Summary/Keyword: 생육과정

Search Result 540, Processing Time 0.034 seconds

Fermentation of Chinese Cabbage Kimchi Soaked with L. acidophilus and Cleaned Materials by Ozone (오존처리 청정재료와 L. acidophilus를 이용한 배추김치의 숙성)

  • 김미정;오영애;김미향;김미경;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.165-174
    • /
    • 1993
  • This work was conducted to study the use of L. acidophilus, which exists in humun intestine for the fermentation of Chinese cabbage kimchi. The changes in vitamins, the number of microflora and sensory quality were observed during fermentation after the microflora which was not related to kimchi fermentation was eliminated by treatment with ozone water or ozone gas. The growth rate of L. acidophilus in the cabbage juice was higher than that in MRS broth. The growth of L. acidophilus was slightly promoted by adding 1~2% hot pepper powder while that was inhibited by ginger and garlic. Therefore, it was shown that the regulation of fermentation was possible by addition of spices. The result of treating spice with ozone gas and ozone water 6mg/L/sec for 1 hour was that the survival ratio of total microflora was 6~20%. When L. acidophilus was added to materials after ozone treatment, the fermentation rate was improved and the polysaccharides in the cell wall were used when the usable free sugar was all consumed. The contents of vitamin B$_1$ and C in the ozone treated kimchi was higher than in the control.

  • PDF

Characteristics of Fibrinolytic Enzymes of Bacillus licheniformis CY-24 Isolated from Button Mushroom Compost (양송이 배지로부터 분리한 Bacillus licheniformis CY-24의 섬유소분해 효소의 특성)

  • Min, Gyeong-Jin;Park, Hea-sung;Lee, Een-ji;Lee, Chan-Jung
    • The Korean Journal of Mycology
    • /
    • v.49 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • The present study was performed to improve the technique used for fermenting the mushroom growth medium. Taxonomic analysis of 16S rDNA sequence from the predominant Bacillus strain CY-24 isolated during the fermentation phase of the rice straw medium identified it as Bacillus licheniformis. In addition, the growth environment of B. licheniformis was also examined in this study, which revealed the optimal growth temperature and pH to be 30 ℃ and 6.0, respectively. This study also revealed that carboxymethyl cellulase (CMCase) and polygalacturonase (PGase) enzymes isolated from B. licheniformis achieved their maximal activities at 50 ℃ and 60 ℃ respectively. Furthermore, the study confirmed that the two enzymes, i.e., CMCase and PGase in B. licheniformis are stable at temperatures above 60 ℃. The present study thus demonstrates that B. licheniformis CY-24 possesses excellent enzymatic properties. It also reveals that the action of enzymes during the production of growth mediums used for the cultivation of mushrooms is closely associated with the promotion of fermentation and softening of the rice straw. Overall, this study provides elementary information regarding the role of B. licheniformis enzymes during growth medium fermentation for Agaricus bisporus cultivation.

Breeding of a New Cultivar, 'Sanggang' with Upright Stipe and Improved Shelf life in Agrocybe aegerita (직립형이고 저장성이 개선된 버들송이 신품종 '상강' 육성)

  • Jeon, Dae-Hoon;Ha, Tai-Moon;Choi, Jong-In;Ju, Young-Cheol;Yoo, Young-Bok
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.711-716
    • /
    • 2010
  • 'Sanggang', a new cultivar of Agrocybe aegerita, was bred with mating between monokaryotic strains isolated from 'GMAG45109' and 'GMAG45107' in Mushroom Research Station, Gyonggi Province A.R.E.S. in 2009. The optimum temperature for the mycelial growth of 'Sanggang' was 26 to 28$^{\circ}C$ on PDA(potato dextrose agar) medium. The optimum temperature for the primordia formation and fruiting body development of 'Sanggang', was 18 to 20$^{\circ}C$. In the bottle cultivation of 'Sanggang', the period of spawn running was around 38 days at 22 to 23$^{\circ}C$ and the period from scratching of inoculum to harvest was 12 days. These characteristics of 'Sanggang' were not different from those of 'Mihwang' (control). 'Sanggang' had brown-colored pileus, whereas 'Mihwang' had yellowish brown-colored one. In bottle cultivation, 'Sanggang' hada little smaller but stronger stipe and pilus than 'Mihwang', and 'Sanggang', as well as 'Mihwang', had upright stipe. And 'Sanggang' was shown to have lower veil opening ratio than that of 'Mihwang' at harvest time.The yield of fruiting bodies of 'Sanggang' was 134 g/850ml bottle, which was similar to that of 'Mihwang'. Resistance of'Sanggang' against Trichoderma spp., as well as 'Mihwang', was weak. Freshness of 'Sanggang' was maintained for 13 days under storage temperature 4$^{\circ}C$, while that of 'Mihwang' was maintained for 10 days.

Characterization of a New Cultivar, 'Cham' in Agrocybe aegerita (버들송이 신품종 '참'의 특성)

  • Jeon, Dae-Hoon;Choi, Jong-In;Ha, Tai-Moon;Ju, Young-Cheol
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.288-293
    • /
    • 2010
  • 'Cham', a new cultivar of Agrocybe aegerita, was bred by crossing between monokaryotic strains isolated from GMAG45021 and 'Beodeulsongi1ho' in Mushroom Research Station, Gyonggi Province A.R.E.S. in 2007. The optimum temperature for the mycelial growth of 'Cham' was 26 to $28^{\circ}C$ on PDA medium, whereas that of 'Beodeulsongi1ho'(control) was 24 to $26^{\circ}C$. The optimum temperature for the primordial formation and fruiting body development of 'Cham', as well as 'Beodeulsongi1ho', was 18 to $20^{\circ}C$. In the bottle cultivation, the spawn run period of 'Cham' at 22 to $23^{\circ}C$ was around 38 days and the period from scratching of inoculum to harvest was 12 days. These characteristics of 'Cham' were not different from those of 'Beodeulsongi1ho'. However, 'Cham' had more dark brown-colored, and thicker and stronger pileus, and longer and thicker stipe compared to that of 'Beodeulsongilho'. Freshness of 'Cham' was maintained for 10 days at the storage temperature of $4^{\circ}C$, while that of 'Beodeulsongi1ho' was maintained for 8 days. Moreover, the yield of fruiting bodies of 'Cham' was $141g/850m{\ell}$ bottle, which was similar to that of 'Beodeulsongi1ho'. Both 'Cham' and 'Beodeulsongilho' have lower resistivity against Trichoderma virens and Trichoderma harzianum.

Assessment of Contribution of Climate and Soil Factors on Alfalfa Yield by Yield Prediction Model (수량예측모델을 통한 Alfalfa 수량에 영향을 미치는 기후요인 및 토양요인의 기여도 평가)

  • Kim, Ji Yung;Kim, Moon Ju;Jo, Hyun Wook;Lee, Bae Hun;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.

Effect of Growth and Nitrogen Use Efficiency to Chinese Cabbage under Fermented Organic Fertilizer Treatment with Domestic Resource (국내 자원으로 제조한 발효 유기질비료가 배추의 생육 및 질소이용효율에 미치는 영향)

  • You-Jin Kim;So-Hui Kim;Sang-Min Lee;Cho-Rong Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.83-91
    • /
    • 2023
  • This study investigate growth responses of Chinese cabbage and nitrogen use efficiency (NUE) to application of fermented organic fertilizer produced from domestic organic resources for developing alternative materials instead of imported castor oil meal. Two types of fermented fertilizers (Fermented Organic Fertilizer A (OFA) and Fermented Organic Fertilizer B (OFB)) were produced by mixing distillers dried grains 30%, sesame cake 30%, rice bran 20% and fish meal 20% under different fermentation conditions. Treatment consisted of OFA is fermented for 21 days on plastic greenhouse, OFB is fermented for 5 days on 40℃, and MOF (Mixed Organic Fertilizer) is a fertilizer made with castor bean as the main ingredient. OFA, OFB and MOF were applied at the rate of 320 kg N/ha. Chinese cabbages were cultivated from Aug. to Nov. in 2022. Growth and yield of Chinese cabbage were no significant differences among all treatments except control (non-fertilized, NF). However, NUE of Chinese cabbage was higher the fermented fertilizer treatment (OFB: 81.4%, OFA: 79.1%) than the MOF (65.3%). It was observed that urease activity in the fermented fertilizer treatment was significantly higher than the MOF. This result confirmed that fermented fertilizers have similar effect on growth and yield with the MOF and could improve the NUE of crop.

Effect of Different Fertilization on Physiological Characteristics and Growth Performances of Eucalyptus pellita and Acacia mangium in a Container Nursery System (시비처리가 Eucalyptus pellita와 Acacia mangium 용기묘의 생리 및 생장 특성에 미치는 영향)

  • Cho, Min-Seok;Lee, Soo-Won;Bae, Jong-Hyang;Park, Gwan-Soo
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • The objective of this study was to find optimal nutrient condition of container seedling production of two tropical species for high seedling quality. This study was conducted to investigate photosynthesis, chlorophyll fluorescence, chlorophyll contents, and growth performances of container seedlings of Eucalyptus pellita and Acacia mangium growing under four different fertilization treatments (Con., $0.5\;g{\cdot}l^{-1}$, $1.0\;g{\cdot}l^{-1}$, and $2.0\;g{\cdot}l^{-1}$ fertilization). E. pellita showed outstanding photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $1.0\;g{\cdot}l^{-1}$ fertilization. Meanwhile, E. pellita showed the highest photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $2.0\;g{\cdot}l^{-1}$ fertilization, as fertilization rate were increased, those of A. mangium increased. Like physiological characteristics, Both E. pellita at $1.0\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization were higher root collar diameter, height, biomass, and seedling quality index than other treatments. These results showed that E. pellita at $1\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization is optimal nutrient condition, respectively. Moreover, fertilization rate controlling is very important for growth and seedling quality of container seedling.

Economic Analysis on the Automation System of the Cultivation Process in the Plant Factory (식물공장 재배 공정 자동화 시스템의 경제성 분석)

  • Jung, Mincheol;Kim, Handon;Kim, Jimin;Choi, Jeongmin;Jang, Hyounseung;Jo, Soun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A plant factory is a facility that creates an artificial environment in a controlled space and produces plants systematically through automated facilities. However, automation in the cultivation process is insufficient compared to the internal environment control technology in plant factories. This causes the problem of an increase in operating costs due to the input of a large number of workers. Therefore, this study aims to evaluate economic feasibility by comparing before and after introducing automation in the cultivation process of plant factories. The target plant factory to be analyzed was selected, and the break-even point analysis method was used by comparing the cost required compared to the operating period. As a result, the break-even point was analyzed to be 3.4 years when automation was introduced into six processes for plant cultivation. Therefore, it can be judged that the introduction of automation is excellent in terms of economic feasibility when the target plant factory has been operated for more than 3.4 years. This study is expected to be used as basic data to analyze the economic feasibility of introducing automation in domestic and foreign plant factories.

Growth, Storage and Fresh-cut Characteristics of Onion (Allium cepa L.) in Unstable Environmental Condition and Storage Temperature (양파의 이상 재배조건에서 생육과 저장온도에 따른 저장성 및 포장한 신선편이 특성)

  • Lee, Jung-Soo;Chang, Min-Sun;Park, SuHyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.143-154
    • /
    • 2016
  • The purpose of this study was investigated the quality changes before and after harvesting, storage and, processing of onion. Experiments were carried out to compare the effect on the characteristics of the postharvest from preharvest factors using onion. This experiment had identified the characteristics of harvested onions after cultivating with several preharvest factors such as the light and water conditions. These tests were conducted in an onion growth in the field, storage, and processing of fresh-cut during a laboratory periods of 2 years. In first year, onion cultivars ('Kars' and 'Pop') were produced under stable or unstable environment conditions, these onions were stored at low temperature(0?). Measurement was evaluated by the growth amount after harvesting, and the fresh weight loss and respiration rate during storage. According to different culture conditions and storage temperatures, it was investigated the properties of the fresh-cut onion. Growth of onion was varied depending on the cultivars and culture conditions. The amount of growth on 'Kars' and 'Pop' onions were decreased by excessive soil water conditions with shading. These influences were found the morphological differences resulting for the cell tissue of onion being rough and large. Onion cultivated in excessive soil water with shading affected the degree of its respiration rate and fresh weight loss during storage. Ones in excessive soil water with shading were higher than the control in fresh weight loss and respiration rate, respectively. However fresh-cut onion could not investigated to clarify the difference due to effects of cultivation condition and storage temperature on some measure items such as electrolyte leakage and microbial number change. There was a change of only electrolyte leakage depending on the storage temperature, rather than cultivated conditions before harvesting factor. The results showed that the onion grown on in the good environment was represented to a good quality produce even after harvesting.

Environmental Effects on the Growth and Development of Tomato in Composting Greenhouse (퇴비발효온실의 환경조건이 토마토의 생육에 미치는 영향)

  • 양원모;홍지형;박금주;손보균
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.202-209
    • /
    • 1996
  • The environment in composting greenhouse is very different with the traditional greenhouse by biothermal energy and $CO_2$ concentration. This experiment aimed to investigate the environmental effects on the growth and development of tomato grown at composting greenhouse. The room temperature is not different between two greenhouses because of heating and ventilation, but the soil temperature in composting greenhouse is about 7$^{\circ}C$ to 15$^{\circ}C$ higher than that of traditional greenhouse. The emission concentration of ammonia gas is the highest, 117.3ppm, at the 6th day starting the digest, and were gradually lowered from 7th day, 11 became 15.7ppm at the 16th day. The concentration of $CO_2$ in composting greenhouse were 250 to 2000ppm higher than that of traditional greenhouse for 4 months starting digest. The growth and development of tomato grown at composting greenhouse was better than that of traditional greenhouse. The yield in composting greenhouse was also better than that of traditional greenhouse. The sugar contents of tomato grown at composting greenhouse became about 1 $^{\circ}$Brix higher than that of traditional greenhouse.

  • PDF