• Title/Summary/Keyword: 생성 데이터 증강

Search Result 147, Processing Time 0.036 seconds

Parametric Image Generation and Enhancement in Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 파라미터 영상 생성 및 개선 기법)

  • Kim, Shin-Hae;Lee, Eunlim;Jo, Eunbee;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.708-711
    • /
    • 2016
  • 본 논문에서는 의료초음파 영상에서 진단 파라미터 데이터를 가시화 하는 방법론으로서 연속적인 픽셀 값을 갖는 전이시간 데이터의 표현과, 4가지 유형의 값으로 분류되는 병변 진단 파라미터 영상을 생성하는 방법을 제시한다. 또한 생성된 파라미터 영상에서 노이즈를 제거하기 위한 방법론으로서 MRF 모델을 이용한 영상개선 기법을 제안한다. 이러한 파라미터 영상 생성기법은 초음파 진단 데이터에서 조영증강 패턴의 동적인 변화에 대한 육안 판별의 한계를 극복할 수 있게 한다. MRF 기반 영상개선 과정에서 연속적인 픽셀 값에 대한 에너지함수를 정의하고 이를 최적화 하는 기법을 개발하였으며 실제 의료영상을 사용한 실험을 통하여 제안된 이론의 유용성을 평가하였다.

An Implementation of Markerless Augmented Reality Using Efficient Reference Data Sets (효율적인 레퍼런스 데이터 그룹의 활용에 의한 마커리스 증강현실의 구현)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2335-2340
    • /
    • 2009
  • This paper presents how to implement Markerless Augmented Reality and how to create and apply reference data sets. There are three parts related with implementation: setting camera, creation of reference data set, and tracking. To create effective reference data sets, we need a 3D model such as CAD model. It is also required to create reference data sets from various viewpoints. We extract the feature points from the mode1 image and then extract 3D positions corresponding to the feature points using ray tracking. These 2D/3D correspondence point sets constitute a reference data set of the model. Reference data sets are constructed for various viewpoints of the model. Fast tracking can be done using a reference data set the most frequently matched with feature points of the present frame and model data near the reference data set.

Parametric Image Generation and Enhancement in Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 파라미터 영상 생성 및 개선 기법)

  • Kim, Shin-Hae;Lee, Eun-Lim;Jo, Eun-Bee;Kim, Ho-Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • This paper proposes image processing techniques that improve usability and performance in a diagnostic system of the contrast-enhanced ultrasonography. For a methodology for visualizing diagnostic parameter data in an ultrasonic medical image, an expression of transition time data with successive pixel values and a method of generating a lesion diagnostic parameter image with four categorized values are presented. We also introduce a MRF-based image enhancement technique to eliminate noises from generated parametric images. Such parametric image generation technique can overcome the difficulty of discriminating dynamic change in patterns in the ultrasonography. The technique clarifies the contour of the region in the original image and facilitates visual determination of the characteristics of the lesion through four colors. With regard to this MRF-based image enhancement, we define the energy function of consecutive pixel values and develop a technique to optimize it, and the usability of the proposed theory is examined through experiments with medical images.

Efficient Collecting Scheme the Crack Data via Vector based Data Augmentation and Style Transfer with Artificial Neural Networks (벡터 기반 데이터 증강과 인공신경망 기반 특징 전달을 이용한 효율적인 균열 데이터 수집 기법)

  • Yun, Ju-Young;Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.667-669
    • /
    • 2021
  • 본 논문에서는 벡터 기반 데이터 증강 기법(Data augmentation)을 제안하여 학습 데이터를 구축한 뒤, 이를 합성곱 신경망(Convolutional Neural Networks, CNN)으로 실제 균열과 가까운 패턴을 표현할 수 있는 프레임워크를 제안한다. 건축물의 균열은 인명 피해를 가져오는 건물 붕괴와 낙하 사고를 비롯한 큰 사고의 원인이다. 이를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이다. 하지만, 실제 균열 이미지는 복잡한 패턴을 가지고 있을 뿐만 아니라, 위험한 상황에 노출되기 때문에 대량의 데이터를 확보하기 어렵다. 이러한 데이터베이스 구축의 문제점은 인위적으로 특정 부분에 변형을 주어 데이터양을 늘리는 탄성왜곡(Elastic distortion) 기법으로 해결할 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 CNN을 활용하여 보여준다. 탄성왜곡 기법보다 CNN을 이용했을 때, 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적으로 사용되는 픽셀 기반 데이터가 아닌 벡터 기반으로 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수함을 보였다. 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 쉽게 균열 데이터베이스를 구축할 수 있었다. 이는 장기적으로 구조물의 안정성 평가에 이바지하여 안전사고에 대한 불안감에서 벗어나 더욱 안전하고 쾌적한 주거 환경을 조성할 것으로 기대된다.

  • PDF

Data Augmentation for Alleviating Toxicity of Open-Domain Dialogue System using LLM (LLM을 활용한 오픈 도메인 대화 시스템의 유해성을 완화하는 데이터 증강 기법)

  • San Kim;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.346-351
    • /
    • 2023
  • 오픈 도메인 대화 시스템은 산업에서 다양하게 활용될 수 있지만 유해한 응답을 출력할 수 있다는 위험성이 지적되어 왔다. 본 논문에서는 언급된 위험성을 완화하기 위해 데이터 측면에서 대화 시스템 모델을 개선하는 방법을 제안한다. 대화 모델의 유해한 응답을 유도하도록 설계된 데이터셋을 사용하여 모델이 올바르지 못한 응답을 생성하게 만들고, 이를 LLM을 활용하여 안전한 응답으로 수정한다. 또한 LLM이 정확하게 수정하지 못하는 경우를 고려하여 추가적인 필터링 작업으로 데이터셋을 보완한다. 생성된 데이터셋으로 추가 학습된 대화 모델은 기존 대화 모델에 비해 대화 일관성 및 유해성 면에서 성능이 향상되었음을 확인했다.

  • PDF

Development of an Image Data Augmentation Apparatus to Evaluate CNN Model (CNN 모델 평가를 위한 이미지 데이터 증강 도구 개발)

  • Choi, Youngwon;Lee, Youngwoo;Chae, Heung-Seok
    • Journal of Software Engineering Society
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • As CNN model is applied to various domains such as image classification and object detection, the performance of CNN model which is used to safety critical system like autonomous vehicles should be reliable. To evaluate that CNN model can sustain the performance in various environments, we developed an image data augmentation apparatus which generates images that is changed background. If an image which contains object is entered into the apparatus, it extracts an object image from the entered image and generate s composed images by synthesizing the object image with collected background images. A s a method to evaluate a CNN model, the apparatus generate s new test images from original test images, and we evaluate the CNN model by the new test image. As a case study, we generated new test images from Pascal VOC2007 and evaluated a YOLOv3 model with the new images. As a result, it was detected that mAP of new test images is almost 0.11 lower than mAP of the original test images.

Enhancement of Tongue Segmentation by Using Data Augmentation (데이터 증강을 이용한 혀 영역 분할 성능 개선)

  • Chen, Hong;Jung, Sung-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.313-322
    • /
    • 2020
  • A large volume of data will improve the robustness of deep learning models and avoid overfitting problems. In automatic tongue segmentation, the availability of annotated tongue images is often limited because of the difficulty of collecting and labeling the tongue image datasets in reality. Data augmentation can expand the training dataset and increase the diversity of training data by using label-preserving transformations without collecting new data. In this paper, augmented tongue image datasets were developed using seven augmentation techniques such as image cropping, rotation, flipping, color transformations. Performance of the data augmentation techniques were studied using state-of-the-art transfer learning models, for instance, InceptionV3, EfficientNet, ResNet, DenseNet and etc. Our results show that geometric transformations can lead to more performance gains than color transformations and the segmentation accuracy can be increased by 5% to 20% compared with no augmentation. Furthermore, a random linear combination of geometric and color transformations augmentation dataset gives the superior segmentation performance than all other datasets and results in a better accuracy of 94.98% with InceptionV3 models.

Data augmentation technique based on image binarization for constructing large-scale datasets (대형 이미지 데이터셋 구축을 위한 이미지 이진화 기반 데이터 증강 기법)

  • Lee JuHyeok;Kim Mi Hui
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2023
  • Deep learning can solve various computer vision problems, but it requires a large dataset. Data augmentation technique based on image binarization for constructing large-scale datasets is proposed in this paper. By extracting features using image binarization and randomly placing the remaining pixels, new images are generated. The generated images showed similar quality to the original images and demonstrated excellent performance in deep learning models.

A Broken Image Screening Method based on Histogram Analysis to Improve GAN Algorithm (GAN 알고리즘 개선을 위한 히스토그램 분석 기반 파손 영상 선별 방법)

  • Cho, Jin-Hwan;Jang, Jongwook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.591-597
    • /
    • 2022
  • Recently, many studies have been done on the data augmentation technique as a way to efficiently build datasets. Among them, a representative data augmentation technique is a method of utilizing Generative Adversarial Network (GAN), which generates data similar to real data by competitively learning generators and discriminators. However, when learning GAN, there are cases where a broken pixel image occurs among similar data generated according to the environment and progress, which cannot be used as a dataset and causes an increase in learning time. In this paper, an algorithm was developed to select these damaged images by analyzing the histogram of image data generated during the GAN learning process, and as a result of comparing them with the images generated in the existing GAN, the ratio of the damaged images was reduced by 33.3 times(3,330%).

Analysis of Malware Image Data Augmentation based on GAN (GAN 기반의 악성코드 이미지 데이터 증강 분석)

  • Won-Jun Lee;ChangHoon Kang;Ah Reum Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.99-100
    • /
    • 2024
  • 다양한 변종들의 존재와 잘 알려지지 않은 취약점을 이용한 공격은 악성코드 수집을 어렵게 하는 요인들이다. 부족한 악성코드 수를 보완하고자 생성 모델을 활용한 이미지 기반의 악성코드 데이터를 증강한 연구들도 존재하였다. 하지만 생성 모델이 실제 악성코드를 생성할 수 있는지에 대한 분석은 진행되지 않았다. 본 연구는 VGG-11 모델을 활용해 실제 악성코드와 생성된 악성코드 이미지의 이진 분류하였다. 실험 결과 VGG-11 모델은 99.9%의 정확도로 두 영상을 다르게 판단한다

  • PDF