• Title/Summary/Keyword: 생성모형

Search Result 1,366, Processing Time 0.034 seconds

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Analysis on the Characteristics and Criteria Development in Performing Science Inquiry Tasks for Elementary School Students (초등학생 과학 탐구과제 수행 특성 분석 및 채점기준 개발)

  • Ham, Eun Hye;Lee, You-kyung;Park, So-Young;Park, Hyejin;Lee, Sunghye
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.239-252
    • /
    • 2022
  • This study aims to develop performance criteria based on characteristics observed in science inquiry tasks for elementary school students. First, the performance characteristics by observing 70 fifth-grade elementary school students' science inquiry activity report are listed. Second, the checklist-type scoring criteria in connection with the theoretical framework of scientific inquiry process and relevant competencies are developed. Third, with the developed scoring criteria, 11 raters participate in scoring 350 students' reports. The main findings are as follow: first, the scoring data are well-fitted for the many-faceted Rasch model, and 22 scoring criteria are reasonably-well differentiated for various levels of proficiency. Second, at low performance level, observable characteristics are to answer questions explicitly required by the task or to observe objects or phenomena using pre-learned scientific concepts, while at high performance level, to explore additional data other than given data or to reflect on one's experimental process. Based on the results, the usefulness of analyzing students' performance characteristics for developing the scoring criteria, and further research directions are discussed.

Predicting the Retention of University Freshmen Using Peer Relationships (대학 신입생들의 교우관계를 통한 학업유지 예측)

  • Lee, Yeonju;Choi, Sungwon
    • Korean Journal of School Psychology
    • /
    • v.18 no.1
    • /
    • pp.31-48
    • /
    • 2021
  • The purpose of this study was to determine whether the retention of university freshmen could be predicted using their peer relationships in a specific department. In this study, retention was defined as a student staying enrolled in their university for a certain period of time. Social relationships are formed through interaction between people, so both students' self-perceptions and others' perceptions of them must be accounted for, so we used a social network analysis that did so. We examined social networks visualizations that allowed for a rich interpretation of numerical information. Participants in this study were freshmen who enrolled in an undergraduate program in 2017, 2018, or 2019. We used the name generator method to determine how quantitative friendship network variables predicted the academic retention up to the first semester of 2020. Cox proportional hazard model analysis showed that the weighted indegree centrality with intimacy positively predicted retention. The results of this study can be used to identify and conduct interventions for students who may be likely to disenroll. However all of the students did not participate in the department, it was difficult to examine their entire peer networks. Thus, this study's results cannot be generalized because the participants are students of a specific major, so further research is needed to produce more generalizable results.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Environmental Factors on the Use of Wildlife Bridge by Striped Field Mouse (Apodemus agraius) (등줄쥐의 육교형 생태통로 이용에 미치는 환경 특성)

  • Gi-Yeong Jeong;Ji-Hoon Lee;Yong-Won Mo
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.337-346
    • /
    • 2023
  • Although wildlife bridge are built as a way to reduce habitat fragmentation caused by road construction, there is still a lot of debate about their effectiveness. Monitoring methods such as footprint traps and camera traps are used evaluate the effectiveness of wildlife bridge, but there is a limit to evaluate of effectiveness. In this study, the degree of use the wildlfe bridge was surveyed by striped field mouse that is likely use the wildlife bridge and surrounding as a habitat with capture-mark-recapture method.(Apodemus agraius). The distance and route of movement were identified by connecting the capture points, and the environmental factors on the use of the wildlife bridge implemented a generalized linear model(GLM) with the capture number of captured as a dependent variable. Consequently of capture, no individuals crossing the wildlife bridge, striped field mouse use the wildlife bridge as a habitat.The environmental factors affecting the use of mice were vegetation cover(1~2m, 2~8m, over 8m), vegetation construction, maximum diameter at breast height were positively correlated and slope was nagatively correlated. In conclusion, it is expected that the effectiveness of the wildlife bridge will be further improved by planting shrubs and trees and preventing high slope and cut slope increasing the utilization of the rat, such as being used as a food source in the ecosystem.

Assessment of water supply reliability under climate stress scenarios (기후 스트레스 시나리오에 따른 국내 다목적댐 이수안전도 평가)

  • Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.409-419
    • /
    • 2024
  • Climate change is already impacting sustainable water resource management. The influence of climate change on water supply from reservoirs has been generally assessed using climate change scenarios generated based on global climate models. However, inherent uncertainties exist due to the limitations of estimating climate change by assuming IPCC carbon emission scenarios. The decision scaling approach was applied to mitigate these issues in this study focusing on four reservoir watersheds: Chungju, Yongdam, Hapcheon, and Seomjingang reservoirs. The reservoir water supply reliablity was analyzed by combining the rainfall-runoff model (IHACRES) and the reservoir operation model based on HEC-ResSim. Water supply reliability analysis was aimed at ensuring the stable operation of dams, and its results ccould be utilized to develop either structural or non-structural water supply plans. Therefore, in this study, we aimed to assess potential risks that might arise during the operation of reserviors under various climate conditions. Using observed precipitation and temperature from 1995 to 2014, 49 climate stress scenarios were developed (7 precipitation scenarios based on quantiles and 7 temperature scenarios ranging from 0℃ to 6℃ at 1℃ intervals). Our study demonstrated that despite an increase in flood season precipitation leading to an increase in reservoir discharge, it had a greater impact on sustainable water management compared to the increase in non-flood season precipitation. Furthermore, in scenarios combining rainfall and temperature, the reliability of reservoir water supply showed greater variations than the sum of individual reliability changes in rainfall and temperature scenarios. This difference was attributed to the opposing effects of decreased and increased precipitation, each causing limitations in water and energy-limited evapotranspiration. These results were expected to enhance the efficiency of reservoir operation.

Monte Carlo Simulations of Selection Responses for Improving High Meat Qualities Using Real Time Ultrasound in Korean Cattle (초음파측정 활용 고급육형 한우개량을 위한 선발반응 Monte Carlo 모의실험)

  • Lee, D. H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-354
    • /
    • 2003
  • Simulation studies were carried out to investigate the responses of selection for three carcass traits (longissimus muscle area: EMA, fat thickness: BF, and marbling score: MS) based on either adjusted phenotypes (APH) or estimated breeding values (EBV) in multivariate animal model with different breeding schemes. Selection responses were estimated and compared on six different models with respect to breeding schemes using either carcass measurements or real time ultrasonic (RTU) scans generated by Monte Carlo computer simulation supporting closed breeding population. From the base population with 100 sires and 2000 dams, 20 sires and 1000 dams by each generation were selected by either APH or EBV for 10 generations. Relative economic weights were equal of three traits as EMA(1): BF(-1) : MS(1) for standardized either APH or EBV. For first two models which were similarly designed with current progeny-test program in Korean cattle, three carcass traits with records either only on male progenies (Model 1) or on male and female progenies (Model 2) were used for selecting breeding stocks. Subsequently, generation intervals on males were assumed as 6${\sim}$10 years in these two models. The other two models were designed with tools of selection by RTU rather than carcass measurements with genetic correlations of 0.81${\sim}$0.97 between RTU and corresponding carcass traits in addition to whether with records (Model 4) or without records (Model 3) on female. In these cases, generation intervals on males were assumed as 2${\sim}$4 years. The remaining last two models were designed as similar with Models 3 and 4 except genetic correlations of 0.63${\sim}$0.68 between RTU and corresponding carcass traits with records (Model 6) and without records (Model 5) on females. The results from 10 replicates on each model and selecting methods suggested that responses indirect selection for carcass traits in Model 4 were 1.66${\sim}$2.44 times efficient rather than those in Model 1. Otherwise, in Model 6 with assuming moderate genetic correlations, those efficiencies were 1.18${\sim}$2.08 times with comparing to responses in Model 1. However, selection response for marbling score was the smallest among three carcass traits because of small variation of measurements. From these results, this study suggested that indirect selection using RTU technology for improving high meat qualities in Korean cattle would be valuable with modifying measuring rules of marbling score forward to large variation or modifying relative economic weight for selection.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

Structure and Evolution of a Numerically Simulated Thunderstorm Outflow (수치 모사된 뇌우 유출의 구조와 진화)

  • Kim, Yeon-Hee;Baik, Jong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.857-870
    • /
    • 2007
  • The structure and evolution of a thunderstorm outflow in two dimensions with no environmental wind are investigated using a cloud-resolving model with explicit liquid-ice phase microphysical processes (ARPS: Advanced Regional Prediction System). The turbulence structure of the outflow is explicitly resolved with a high-resolution grid size of 50m. The simulated single-cell storm and its associated Kelvin-Helmholtz (KH) billows are found to have the lift stages of development maturity, and decay. The secondary pulsation and splitting of convective cells resulted from interactions between cloud dynamics and microphysics are observed. The cooled downdrafts caused by the evaporation of rain and hail in the relatively dry lower atmosphere result in thunderstorm cold-air outflow. The outflow head propagates with almost constant speed. The KH billows formed by the KH instability cause turbulence mixing from the top of the outflow and control the structure of the outflow. Ihe KH billows are initiated at the outflow head, and pow and decay as moving rearward relative to the gust front. The numerical simulation results of the ratio of the horizontal wavelength of the fastest growing perturbation to the critical shear-layer depth and the ratio of the horizontal wavelength of the billow to its maximum amplitude are matched well with the results of other studies.