• Title/Summary/Keyword: 생성모형

Search Result 1,366, Processing Time 0.031 seconds

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of groundwater level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.186-186
    • /
    • 2022
  • 강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.

  • PDF

Development of Drug Input Analysis and Prediction Model Using AI-based Composite Sensors Pre-Verification System (AI 기반 복합센서 사전검증시스템을 활용한 약품투입량 분석 및 예측모델 개발)

  • Seong, Min-Seok;Kim, Kuk-Il;An, Sang-Byung;Hong, Sung-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.559-561
    • /
    • 2022
  • In order to secure the stability of tap water production and supply, we have built a system that can be pre-verified before applying AI-based composite sensors to the water purification plant, which is a demonstration site. We have collected and analyzed data related to the drug input of the GO-RYEONG water purification plant for about two years from December 2019 to December 2021. The outliers of each tag were removed through data preprocessing such as outliers and derived variable, and the cycle was set as average data for 60 minutes of each one-minute period, and the model was learned using the PLS model.

  • PDF

Explainable Prediction Model of Exchange Rates via Spatiotemporal Network Topology and Graph Neural Networks (시공간 의존성 네트워크 위상 및 그래프 신경망을 활용한 설명 가능한 환율 변화 예측 모형 개발)

  • Insu Choi;Woosung Koh;Gimin Kang;Yuntae Jang;Yu Jin Roh;Ji Yun Lee;Woo Chang Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.374-376
    • /
    • 2023
  • 최근 환율 예측에 관한 다양한 연구가 진행되어 왔다. 이러한 추세에 대응하여 본 연구에서는 Pearson 상관 계수 및 상호 정보를 사용하여 외환 시장의 환율 변동을 분석하는 다중 연결 네트워크를 구축하였다. 본 연구에서는 이러한 구성된 환율 변화에 대한 시공간 의존성 네트워크를 만들고 그래프 기계 학습의 잠재력을 조사하여 예측 정확도를 향상시키려고 노력하였다. 본 연구 결과는 선형 및 비선형 종속 네트워크 모두에 대해 그래프 신경망을 활용한 임베딩을 활용하여 기존의 기계 학습 알고리즘과 결합시킬 경우 환율 변화의 예측력이 향상될 수 있음을 경험적으로 확인하였다. 특히, 이러한 결과는 통화 간 상호 의존성에만 의존하여 추가 데이터 없이 달성되었다. 이 접근 방식은 데이터 효율성을 강화하고 그래프 시각화를 통해 설명력 있는 통찰력을 제공하며 주어진 데이터 세트 내에서 효과적인 데이터를 생성하여 예측력을 높이는 결과로 해석할 수 있다.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Effects of Cyanobacterial Bloom on Zooplankton Community Dynamics in Several Eutrophic Lakes (부영양호수에서 남조류 bloom이 동물플랑크톤 군집변화에 미치는 영향)

  • Kim, Bom-Chul;Choi, Eun-Mi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.366-373
    • /
    • 2000
  • Toxin production and low digestibility of cyanobacteria are known to cause low exploitability of cyanobacteria by zooplankton. In this study, we compared relative tolerance and compatibility of zooplankton taxa in eight eutrophic lakes, exposed to frequent cyanobacterial blooms, uring the summer season of 1999. Microcystis, Anabaena, Oscillatoria and Phormidium were common cyanobacteria in all lakes. with relatively lower $NO_3-N$ concentration (<0.2 mgN/l) and TN/TP ratio (<20), compared with other lakes where colonial cyanobacteria dominated. Rotifers were dominant zooplankton in most lakes, and among them, Keratella, Polyarthra and Hexathra were common. The laboratory feeding experiment showed that relative copepods that greatly decreased (90%) after 4 day when cyanobacteria were used as the food source of zooplankton, while rotifers gradually increased with the change of dominant taxa from Keratella through Pompholyx to Monostyla. These results suggest that rotifers may be capable of coexisting with cyanobacteria by exploiting them for the food source.

  • PDF

Analysis on Tax Benefits of Tax Lease Scheme for Ships (선박 조세 리스제도의 세제혜택효과 분석)

  • Cho, Kyu-Yeol;Lee, Ki-Hwan
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.2
    • /
    • pp.63-86
    • /
    • 2020
  • The tax lease scheme for ships is an advanced ship financing tool that generates tax benefits through accelerated depreciation of capital allowances and transferring them to the ship operator (leasee) via reductions in rental payments. The scheme was introduced by Japan in 1978 and by France in 1998 to support their shipping and shipbuilding industries. The size of tax benefits varies by country depending on the depreciation rate for ships, corporate tax rate, and the tax system on profits from the sale of ship. This study uses a virtual model of the Korean tax lease scheme for ships based on the French tax lease scheme. The size of tax benefits is calculated and compared to those in the French and Japanese tax lease schemes. According to the analysis, the size of the tax benefit was approximately 19% for France, 14% for Japan, and 12% for Korea. This is differentiated by the country's depreciation rate and corporate tax rate, which have the greatest impact on the size of tax benefits. For the Korean virtual model, if the tax benefits are distributed by the operator and the investor at the rate of 75:25, the operator is expected to enjoy tax benefits equivalent to about 9% of the ship price and the investor to enjoy 3%. Despite limited information and data regarding the tax lease scheme for ships, this study was the first attempt in Korea to design a virtual model of the Korean tax lease scheme based on some predictable assumptions. Therefore, a group of shipping, financing, and legal experts will follow up on more professional and practical reviews of the model in the near future. Hence, this study will serve as a small contribution to the early introduction of the Korean tax lease scheme for ships.

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Rational Unification Scheme of Topographic Surveying and Cadastral Survey for the Synergistic Convergence Effect of GIS Industry (공간정보산업의 상승적 융합 효과 창출을 위한 측량과 지적의 합리적 통합방안)

  • Park, Hong Gi;Joo, Yong Jin;Min, Kwan Sik;Kim, Young Dan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2013
  • Recently, as GIS industry has substantially grown up, convergence between industries such as the application coverage of surveying and cadastral information is gradually on the increase. The new approach of convergence between topographic surveying and cadastral survey is indispensable to make the change of geospatial environment ready and to maximize the utilization of National Spatial Data Infrastructure(NSDI). The purpose of this paper is to seek the way of synergistic improvement in topographic surveying and cadastral survey in comprehensive aspects of national geospatial information. First, we reviewed policy environment to clearly establish aim of convergence and promising perspective of GIS industry policy, considering NSDI. In addition, we examined current state of administration (organization, human resource, service) and institution situation. We came up with interior ability and external policy environment as well as critical success factor for the synergistic convergence by using SWOT analysis. Lastly, we developed basic perspective of convergence and improvement model and concrete scheme for stakeholder to complementary make progress. We can come to conclusion that the convergence of topographic surveying and cadastral survey should be not only carried in macro outline of successful NSDI but also committed to completion and maintenance of GIS framework.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.