• Title/Summary/Keyword: 생성모형

Search Result 1,366, Processing Time 0.02 seconds

Characterization of Ecological Networks on Wetland Complexes by Dispersal Models (분산 모형에 따른 습지경관의 생태 네트워크 특성 분석)

  • Kim, Bin;Park, Jeryang
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.16-26
    • /
    • 2019
  • Wetlands that provide diverse ecosystem services, such as habitat provision and hydrological control of flora and fauna, constitute ecosystems through interaction between wetlands existing in a wetlandscape. Therefore, to evaluate the wetland functions such as resilience, it is necessary to analyze the ecological connectivity that is formed between wetlands which also show hydrologically dynamic behaviors. In this study, by defining wetlands as ecological nodes, we generated ecological networks through the connection of wetlands according to the dispersal model of wetland species. The characteristics of these networks were then analyzed using various network metrics. In the case of the dispersal based on a threshold distance, while a high local clustering is observed compared to the exponential dispersal kernel and heavy-tailed dispersal model, it showed a low efficiency in the movement between wetlands. On the other hand, in the case of the stochastic dispersion model, a low local clustering with high efficiency in the movement was observed. Our results confirmed that the ecological network characteristics are completely different depending on which dispersal model is chosen, and one should be careful on selecting the appropriate model for identifying network properties which highly affect the interpretation of network structure and function.

The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea (MODIS 대기자료를 활용한 남북한 기상관측소에서의 냉방도일 추정)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Lee, Jihye
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.97-109
    • /
    • 2019
  • Degree days have been determined using temperature data measured at nearby weather stations to a site of interest to produce information for supporting decision-making on agricultural production. Alternatively, the data products of Moderate Resolution Imaging Spectroradiometer (MODIS) can be used for estimation of degree days in a given region, e.g., Korean Peninsula. The objective of this study was to develop a simple tool for processing the MODIS product for estimating cooling degree days (CDD), which would help assessment of heat stress conditions for a crop as well as energy requirement for greenhouses. A set of scripts written in R was implemented to obtain temperature profile data for the region of interest. These scripts had functionalities for processing spatial data, which include reprojection, mosaicking, and cropping. A module to extract air temperature at the surface pressure level was also developed using R extension packages such as rgdal and RcppArmadillo. Random forest (RF) models, which estimate mean temperature and CDD with a different set of MODIS data, were trained at 34 sites in South Korea during 2009 - 2018. Then, the values of CDD were calculated over Korean peninsula during the same period using those RF models. It was found that the CDD estimates using the MODIS data explained >74% of the variation in the CDD measurements at the weather stations in North Korea as well as South Korea. These results indicate that temperature data derived from the MODIS atmospheric products would be useful for reliable estimation of CDD. Our results also suggest that the MODIS data can be used for preparation of weather input data for other temperature-based agro-ecological models such as growing degree days or chill units.

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach (시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.263-269
    • /
    • 2018
  • Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information (기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성)

  • Lee, Jeonghoon;Lee, Okjeong;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.747-757
    • /
    • 2021
  • Quantification of extreme rainfall is very important in establishing a flood protection plan, and a general measure of extreme rainfall is expressed as an T-year return level. In this study, a method was proposed for quantifying spatial distribution and uncertainty of daily rainfall depths with various return periods using a hierarchical Bayesian model combined with climate and geographical information, and was applied to the Seoul-Incheon-Gyeonggi region. The annual maximum daily rainfall depth of six automated synoptic observing system weather stations of the Korea Meteorological Administration in the study area was fitted to the generalized extreme value distribution. The applicability and reliability of the proposed method were investigated by comparing daily rainfall quantiles for various return levels derived from the at-site frequency analysis and the regional frequency analysis based on the index flood method. The uncertainty of the regional frequency analysis based on the index flood method was found to be the greatest at all stations and all return levels, and it was confirmed that the reliability of the regional frequency analysis based on the hierarchical Bayesian model was the highest. The proposed method can be used to generate the rainfall quantile maps for various return levels in the Seoul-Incheon-Gyeonggi region and other regions with similar spatial sizes.

Analysis of the Status of Natural Language Processing Technology Based on Deep Learning (딥러닝 중심의 자연어 처리 기술 현황 분석)

  • Park, Sang-Un
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.63-81
    • /
    • 2021
  • The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.

A study on the estimation and evaluation of ungauged reservoir inflow for local government's agricultural drought forecasting and warning (지자체 농업가뭄 예·경보를 위한 미계측 저수지의 유입량 추정 및 평가)

  • Choi, Jung-Ryel;Yoon, Hyeon-Cheol;Won, Chang-Hee;Lee, Byung-Hyun;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.395-405
    • /
    • 2021
  • When issuing forecasts and alerts for agricultural drought, the relevant ministries only rely on the observation data from the reservoirs managed by the Korea Rural Community Corporation, which creates gaps between the drought analysis results at the local (si/gun) governments and the droughts actually experienced by local residents. Closing these gaps requires detailed local geoinformation on reservoirs, which in turn requires the information on reservoirs managed by local governments across Korea. However, installing water level and flow measurement equipment at all of the reservoirs would not be reasonable in terms of operation and cost effectiveness, and an alternate approach is required to efficiently generate information. In light of the above, this study validates and calibrates the parameters of the TANK model for reservoir basins, divided them into groups based on the characteristics of different basins, and applies the grouped parameters to unmeasured local government reservoirs to estimate and assess inflow. The findings show that the average determinant coefficient and the NSE of the group using rice paddies and inclinations are 0.63 and 0.62, respectively, indicating better results compared with the basin area and effective storage factors (determinant coefficient: 0.49, NSE: 0.47). The findings indicate the possibility of utilizing the information regarding unmeasured reservoirs managed by local governments.

Comparison of the Weather Station Networks Used for the Estimation of the Cultivar Parameters of the CERES-Rice Model in Korea (CERES-Rice 모형의 품종 모수 추정을 위한 국내 기상관측망 비교)

  • Hyun, Shinwoo;Kim, Tae Kyung;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • Cultivar parameter calibration can be affected by the reliability of the input data to a crop growth model. In South Korea, two sets of weather stations, which are included in the automated synoptic observing system (ASOS) or the automatic weather system (AWS), are available for preparation of the weather input data. The objectives of this study were to estimate the cultivar parameter using those sets of weather data and to compare the uncertainty of these parameters. The cultivar parameters of CERES-Rice model for Shindongjin cultivar was calibrated using the weather data measured at the weather stations included in either ASO S or AWS. The observation data of crop growth and management at the experiment farms were retrieved from the report of new cultivar development and research published by Rural Development Administration. The weather stations were chosen to be the nearest neighbor to the experiment farms where crop data were collected. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to calibrate the cultivar parameters for 100 times, which resulted in the distribution of parameter values. O n average, the errors of the heading date decreased by one day when the weather input data were obtained from the weather stations included in AWS compared with ASO S. In particular, reduction of the estimation error was observed even when the distance between the experiment farm and the ASOS stations was about 15 km. These results suggest that the use of the AWS stations would improve the reliability and applicability of the crop growth models for decision support as well as parameter calibration.

A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea (용담댐 기존운영에 대한 의사결정중심 기후변화 영향 평가)

  • Kim, Daeha;Kim, Eunhee;Lee, Seung Cheol;Kim, Eunji;Shin, June
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Amidst the global climate crisis, dam operation policies formulated under the stationary climate assumption could lead to unsatisfactory water management. In this work, we assessed status-quo performance of the Yongdam Dam in Korea under various climatic stresses in flood risk reduction and water supply reliability for 2021-2040. To this end, we employed a decision-centric framework equipped with a stochastic weather generator, a conceptual streamflow model, and a machine-learning reservoir operation rule. By imposing 294 climate perturbations to dam release simulations, we found that the current operation rule of the Yongdam dam could redundantly secure water storage, while inefficiently enhancing the supply reliability. On the other hand, flood risks were likely to increase substantially due to rising mean and variability of daily precipitation. Here, we argue that the current operation rules of the Yongdam Dam seem to be overly focused on securing water storage, and thus need to be adjusted to efficiently improve supply reliability and reduce flood risks in downstream areas.

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

Development of river discharge estimation scheme using Monte Carlo simulation and 1D numerical analysis model (Monte Carlo 모의 및 수치해석 모형을 활용한 하천 유량 추정기법의 개발)

  • Kang, Hansol;An, Hyunuk;Kim, Yeonsu;Hur, Youngteck;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.279-289
    • /
    • 2022
  • Since the frequency of heavy rainfall is increasing due to climate change, water levels in the river exceed past historical records. The rating-curve is to convert water level into flow dicscharge from the regression analysis of the water level and corresponding flow discharges. However, the rating-curve involves many uncertainties because of the limited data especially when observed water level exceed past historical water levels. In order to compensate for insufficient data and increase the accuracy of flow discharge data, this study estimates the flow discharge in the river computed mathematically using Monte Carlo simulation based on a 1D hydrodynamic numerical model. Based on the existing rating curve, a random combination of coefficients constituting the rating-curve creates a number of virtual rating curve. From the computed results of the hydrodynamic model, it is possible to estimate flow discharge which reproduces best fit to the observed water level. Based on the statistical evaluation of these samples, a method for mathematically estimating the water level and flow discharge of all cross sections is porposed. The proposed methodology is applied to the junction of Yochoen Stream in the Seomjin River. As a result, it is confirmed that the water level reproducibility was greatly improved. Also, the water level and flow discharge can be calculated mathematically when the proposed method is applied.