• Title/Summary/Keyword: 생산특성

Search Result 8,941, Processing Time 0.04 seconds

An Extremely Early-Maturing, Plain Area Adaptable, Blast Resistant and High Grain Quality Rice Cultivar 'Joun' (평야지적응 극조생 내도열병 고품질 벼 신품종 '조운')

  • Won, Yong-Jae;Ryu, Hae-Young;Shin, Young-Seop;Hong, Ha-Cheol;Kim, Yeon-Gyu;Kim, Myeong-Ki;Jung, Kuk-Hyun;Jeon, Yong-Hee;Cho, Young-Chan;Ahn, Eok-Keun;Yoon, Kwang-Sup;Lee, Jeong-Heui;Kim, Jeong-Ju;Oh, Sea-Kwan;Oh, Myung-Kyu;Jeung, Ji-Ung;Chun, A-Reum;Park, Hyang-Mi;Roh, Jae-Hwan;Yoon, Young-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.313-317
    • /
    • 2010
  • There are the farmer's needs to develop early-maturing cultivar adaptable to mid-northern inland plain and alpine area. Furthermore, it is required to develop a rice variety to produce new rice before concentrated marketing dates, even in the years of early Chuseok. 'Joun' is a new extremely early-maturing japonica rice cultivar developed in 2009 from the cross of SR14880-173-3-3-2-2-2/Unbong20 at Cheolwon Substation, National Institute of Crop Science (NICS), Rural Development Administration (RDA). The heading date of 'Joun' is July 23 in mid-northern alpine area, which is 7 days earlier than that of Odaebyeo. It has about 61 cm in culm length with semi-erect plant type. Panicle has a few awns and its exertion is good. The number of spikelets per panicle is smaller than that of Odaebyeo and 1,000 grain-weight of brown rice is 21.2 g which is less than 26.3 g of Odaebyeo, but the complete grain ratio is higher. Milled kernels are translucent with non-glutinous endosperm and palatability of cooked rice is good. It shows strong resistance to cold treatment, lodging, premature heading, wilting and viviparous germination during ripening stage. This cultivar shows resistance to leaf blast disease but susceptible to bacterial blight, virus disease and insect pests. The milled rice yield performance of 'Joun' is about 5.18 MT/ha by ordinary culture in local adaptability test for three years. This cultivar may be highly adaptable to the mid-northern inland plain and alpine area, north-eastern coastal area and middle plain area.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

Variation in Grain Quality and Yield of Black-colored Rice Affected by the Transplanting Time and Temperature during Ripening Stage (흑미 품종의 이앙기와 등숙기 온도 변화에 따른 품질 및 수량 변화 특성 구명)

  • Bae, Hyun Kyung;Seo, Jong Ho;Hwang, Jung Dong;Kim, Sang Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Black-colored rice contains anthocyanin, which has an antioxidant function on the seed coat. Anthocyanin content is greatly affected by the cultivation environment, especially the average temperature during the ripening stage. Generally, low temperatures during the ripening stage increase anthocyanin content. To control the average temperature during ripening stage in the field, transplanting time has to be regulated. In this study, anthocyanin content variation was examined in relation to the transplanting time and the average temperature during the ripening stage. For the study, fourteen black-colored rice cultivars with different maturity types (four of early-maturing, five of medium-maturing, and five of medium-late maturing) were selected. The transplanting times used were May 20, June 5, June 20, and June 30. The field experiment was conducted in the Miryang, Kyoungsangnamdo province, Korea from 2014 to 2017. The anthocyanin content in all cultivars was higher when the transplanting time was delayed, and the highest anthocyanin content was observed in the transplanting on June 30. Variation in anthocyanin content according to the change in transplanting time is the greatest in the early maturing cultivars. The least change was observed in medium maturing cultivars. Regression analysis showed a significant correlation between temperature and anthocyanin content, but the degree of correlation was very low in the medium maturing cultivar. As a result, the optimal average temperature during the grain filling stage for increasing the anthocyanin content of black colored rice was $22{\sim}23^{\circ}C$. The rice yield increased in plants transplanted until June 20 and decreased thereafter owing to low temperature during the grain filling stage. The anthocyanin content increased with delaying the transplanting time up to June 30 but the rice yield decreased after June 20. Nevertheless, the rate of increase in anthocyanin content was higher than the rate of decrease in rice yield. As a result, the optimum transplanting time and an average temperature of grain filling stage for black-colored rice variety were June 30 and $23{\sim}24^{\circ}C$ considering both anthocyanin content and rice yield.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

Evaluation of Standing Tree Characteristics by Development of the Criteria on Grading Hardwood Quality for Oaks Forests in Central Region of Korea (활엽수 입목형질등급 기준 개발을 통한 중부지역 참나무림의 입목특성 평가)

  • Lee, Young Geun;Lee, Sang Tae;Chung, Sang Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.344-350
    • /
    • 2018
  • This study was carried out to improve the forest management method considering the use of high value added timber in the natural broadleaf forests. For this purpose, the criteria for evaluating the quality grade of standing trees were established and applied to the oak stand in the central region of Korea. The evaluation factors of the grade were bending of stem, branch, stem damage, and other defects. If the logs are divided into 2.1 m units and three logs up to 6.3 m are available, they are classified as Grade I (G-I). If two logs are available, they are classified as Grade II (G-II), If only one log is available, it is classified as Grade III (G-III). When any log is not available as timber, it is classified as Grade IV (G-IV). As a result of applying the grade to the oak stand, G-I was 6.7 %, G-II was 28.0 %, G-III was 38.3 %, and G-IV was 27.0 %. The ratio of standing trees by oak species of higher than G-III was 88.2 % for Quercus acutissima, 88.1 % for Q. variabilis, 83.5 % for Q. serrata, 56.3 % for Q. aliena, and 50.3 % for Q. mongolica, respectively. The G-IV ratio for Q. variabilis and Q. mongolica tended to decrease with increasing diameter at breast height. The order of major defect affecting the grading level was bending of stem > branch > stem damage > other defects. Considering the grade level and oak species distribution, it was concluded possible to produce high quality hardwood timber when we concentrate forest tending techniques on Q. acutissima and Q. variabilis stand. In order to improve the accuracy of grading, it is necessary to continuous complement through the monitoring research for evaluation factors.

An essay on appraisal method over official administration records ill-balanced. -For development of appraisal process and method over chosun government-general office records- (불균형 잔존 행정기록의 평가방법 시론 - 조선총독부 공문서의 평가절차론 수립을 위하여 -)

  • Kim, Ik-Han
    • The Korean Journal of Archival Studies
    • /
    • no.13
    • /
    • pp.179-203
    • /
    • 2006
  • This study develops the process and method of official administration documents which have remained ill-balanced like the official documents of the government-general of Chosun(the pro-Japanese colonial government (1910-1945)). At first, the existing Appraisal-theories are recomposed. The Appraisal-Theories of Schellenberg is focused valuation about value of records itself, but fuction-Appraisal theory is attached importance to operational activities which take the record into action. But given that the record is a re-presentation of operational activities, the both are the same on the philosophy aspect. Therefore, in the case that the process - method is properly designed, it can be possible to use a composite type between operational activities and records. Also, a method of the Curve has its strong points in the macro and balanced aspect while the Absolute has it's strength in the micro aspect, so that chances are that both alternate methodologies are applied to the study. Hereby, the existing Appraisal theories are concluded to be the mutually-complemented things that can be easily put together into various forms according to the characteristics of an object and its situation, in the terms of the specific Appraisal methodology. Especially, in the case of this article dealing with the imbalance remains official-documents, it is necessary to compromise more properly process with a indicated useful method than establishing a method and process by choosing the only one theory. In order to appraise the official-documents of the pro-Japanese colonial government (1910-1945), a macro appraisal of value has to be appraised about them by understanding a system, functions and using the historical-cultural evolution, after analysing Disposal Authority. From this, map the record so that organization function maps are constructed regarding the value rank of functions and detailed-functions. After this, establish the appraisal strategy considering the internal environment of archival agencies and based on micro appraisal to a great quantity of records remained and supplying other meaning to a small quantity of records remained for example, the oral resources production are accomplished. The study has not yet reached the following aspects ; a function analysis, historical decoding techniques, a curve valuation of the record, the official gazette of the government general of Chosun( the pro-Japanese government for 1910-1945), an analysis method of the other historical materials and it's process, presentation of appraisal output image. As the result, that's just simply a proposal and we should fill in the above-mentioned shortages of the study through development of all the up-coming studies.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario (RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화)

  • Sang, Wan-Gyu;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jeong-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2018
  • The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.

Production and biological applications for marine proteins and peptides- An overview (해양생물로부터 기능성 펩티드의 생산 및 응용)

  • Kim, Se-Kwon;Byun, Hee-Guk
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.278-301
    • /
    • 2018
  • Although more than 80% of living organisms are found in marine ecosystems, only less than 10% of marine resources have been utilized for human food consumptions and other usages. It is well known that marine resources (fish, shellfish and algae) have exceptional nutritional properties; however, their functional characteristic has not been completely discovered. It is believed that metabolites (organic compounds, proteins, peptides, lipids, minerals, etc.) play an important role to show its biological properties. Marine proteins and peptides are considered to be future drugs due to their excellent biological activities with a fewer adverse side effect. Marine peptides show several biological activities, including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-viral, anti-tumor, anti-diabetic, anti-hypertensive, anti-coagulant, immunomodulatory, appetite suppressing and neuroprotective effects. Therefore, the pharmaceutical, nutraceutical, and cosmeceutical companies have been paid attention to the marine peptides to commercialize into products. This current review mainly focused on the above mentioned biological activities of marine peptides and protein hydrolysates as a functional food and pharmaceutical applications. To commercialize these materials in industrial level required large quantity in high-purity level, and it is complicated to produce huge quantity from the marine resources due to insufficient raw materials, unavailability of raw materials through a year, hinder the growth with geographical variations, and availability of compounds in extreme small quantities. The best solution for these issues is to introduce new modern technologies such as artificial intelligence robots, drones, submersibles and automated raw material harvesting vessels in farming industries instead of man power, which will lead to 4th industrial revolution.

A Study for Mechanical Property for A516-60, A283-C, A285-C and SB410 materials under Low Temperature (저온영역에서의 A516-60, A283-C, A285-C, SB410 소재 특성 평가)

  • Oh, Jung-Soo;Lee, Hee-Bum;Lee, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.405-411
    • /
    • 2019
  • In this study, tensile tests were carried out on materials (A516-60, A283-C, A285-C, and SB410) for structural and pressure vessels at temperatures of $20^{\circ}C$, $-20^{\circ}C$, and $-40^{\circ}C$, and the changes in the mechanical properties were analyzed. Compared to the results at $20^{\circ}C$, the average yield stress increased by 6.4% and 7.5% at $-20^{\circ}C$ and $-40^{\circ}C$ for A516-60, while the average tensile stress increased by 1.3% and 4.1%, respectively. The average elongation decreased by 4.7% and 20.4% at these temperatures. In the case of A283-C, the average yield stress increased 8.8% and 9.8%, the average tensile stress increased by 4.1% and 5.9%, and the average elongation rate decreased by 7.4% and 9.9% at $-20^{\circ}C$ and $-40^{\circ}C$, respectively. For A285-C, the average yield stress increased by 1.8% and 8.6%, and the average tensile stress increased by 2.6% and 5.3%, respectively, but there was little change in the average elongation. Finally, for SB410, the average yield stress increased by 7.1% and 11.8%, the average tensile stress increased by 4.3% and 5.5%, but the average elongation rate decreased by 8.7% and 13.5%, respectively.