• Title/Summary/Keyword: 생산력

Search Result 665, Processing Time 0.023 seconds

Primary Production and Nitrogen Regeneration by Macrozooplankton in the Kyunggi Bay, Yellow Sea (서해 경기만의 기초생산력 및 질소계 영양염의 재생산에 관한 연구)

  • Chung, Kyung Ho;Park, Yong Chul
    • 한국해양학회지
    • /
    • v.23 no.4
    • /
    • pp.194-206
    • /
    • 1989
  • Seasonal variations of nutrients (ammonium, nitrite, nitrate, phosphate and silicate), primary productivity and ammonium regeneration rate of macrozooplankton were investigate to understand the relationship between nitrogen recycling and nitrogen requirement by phytoplankton from Feburuary 1986 to November 1987 in the Kyunggi Bay, shallow estuarine water of Yellow Sea. In general, nutrients increased during the winter and depleted during the spring and the early summer except temporally sharp increase after flood in September. Ammonium was prevalently generally found in high concentration throughout the study area and it occasionally raised N/P ratio in the range of 30 to 70 as in the freshwater environment. Daily net primary productivity ranged from 30.3 to 3580.0 mgC/$m^2$/d with an average of 883.9 mgC/$m^2$/d. Annual primary productivity was determined to be 320.0 gC/$m^2$/yr. Carbon assimilation number ranged from 2.9 to 19.4 mgC/mg chl-a/h which increased in the summer and decreased in the winter. Nitrogen requirement by phytoplankton ranged from 0.4 to 45.0 mg at-N/$m^2$/d and turnover time of inorganic nitrogen ranged from 2.4 in the late summer to 122.7 days in the winter. Nitrogen regeneration rate of mixed macrozooplankton determined by bottle incubation method ranged from 0.02 to 1.34 mg at-N $m^2$/d and it could contribute from 2.8 to 38.7% with an annual average of 14.9% of total nitrogen requirement by phytoplankton in this shallow estuarine environment.

  • PDF

Distribution and Growth of Bacteria in the Hypertrophic Lake Shiwha (과영양성 시화호에서 박테리아의 분포 및 성장)

  • Choi, Dong-Han;Kang, Sulk-Won;Song, Ki-Don;Huh, Sung-Hoi;Cho, Byung-Cheol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.92-100
    • /
    • 1997
  • Distribution of bacterial abundance and production was investigated during October, 1995-August, 1996 in Lake Shiwha constructed artificially in 1994. Its water column was distinguished by two layers: the brackish surface layer with salinity ranged from 6 to 20‰ and the saline hypoxic/anoxic bottom layer with salinity of 17 to 27‰ Except for samples collected in March, 1996 (on average 13 ${\mu}g\;l^{-1}$), chlorophyll a concentration ranged from 27.6 to 249.5 ${\mu}g\;l^{-1}$ in the euphotic zone, indicating the hypertrophic condition of Lake Shiwha during most of the studied period. In this study, bacterial productions measured by $^3H$-thymidine incorporation method were similar to those by $^{14}C$-leucine incorporation method. In hypertrophic, surface waters of Lake Shiwha, bacterial abundance and production ranged from 1.4 to $19.5{\times}10^9\;cells\;l^{-1}$ and from 1.6 to $126.5{\times}10^7\;cells\;l^{-1}\;h^{-1}$ respectively; 2 to 4 fold and 2 to 30 fold higher than those in eutrophic coastal waters outside of Lake Shiwha, respectively. Turnover times of bacterial community in the surface layer of Lake Shiwha ranged from 0.2 to 8.9 day, indicating that bacteria in the lake seemed to adapt to the hypertrophic condition. In the hypoxic bottom layer, bacterial abundance and production was up to 3 fold and 20 fold lower than those in the surface layer, and showed slow bacterial growth. Significant correlations between the bacterial abundance, production, and community turnover time with water temperature indicate water temperature was the important factor controlling distribution and growth of bacteria. However, during summer season, bacterial production seemed to be regulated by supply of substrates.

  • PDF

The Study on the Seasonal Variation of Microbial Community in Kyeonggi Bay, Korea 1. Bacteria and Heterotrophic nanoflagellates (경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소 편모류)

  • 양은진;최중기;현정호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.1
    • /
    • pp.44-57
    • /
    • 2003
  • Seasonal variations of bacterial abundance and production, heterotrophic nanoflagellate (HNF) abundance and HNF ingestion rates on bacteria using FLB together with environmental variables were investigated at intervals of a month in Kyeonggi Bay from December 1991 to November 1998. Bacterial abundance and production ranged from 0.38$\times$10$^{9}$ ~ 3.25$\times$10$^{9}$ cells 1$^{-1}$ (average 1.19$\pm$0.69$\times$10$^{9}$ cells 1$^{-1}$ ) and from 1.51 to 20.4 cells 1$^{-1}$ h$^{-1}$ (average 6.04$\pm$ 1.88$\times$10$^{6}$ cells 1$^{-1}$ h$^{-1}$ ), respectively. Bacterial abundance and production showed no differences at the high tide and low tide, and bacterial abundances were not different with depth, but bacterial production decreased with depth. Seasonal variation of bacterial abundance showed almost similar fluctuation pattern to those of DOC (dissolved organic carbon). HNF abundances ranged from 388 to 4,374 cells ml$^{-1}$ (average 1,344$\pm$130 cells ml$^{-1}$ ), were high in March, April, July and August. HNF abundance showed no difference between the high tide and low tide, and was not different with depth. The ingestion rates of HNF on bacteria were 1.0 to 6.3$\pm$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ (average 3.12$\pm$0.55$\times$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ ), resulting ingestion rates of HNF removed 19.4 to 141.4 %(average 62.3$\pm$12.0%) of bacterial production. Ingestion rates and grazing pressure of HNF on bacteria showed high correlation with HNF abundance. Although we cannot exactly discussion about seasonal variation of bacteria community in this study area where physical and chemical parameters were very complex, the results indicate that bacterial abundance and production were mainly controlled by resources supply as dissolved organic carbon and chlorophyll-a(bottom-up) except March which bacterial abundance and production uncoupled chlorophyll-a because of low dissolved organic carbon and low temperature, and were controlled by HNF grazing pressure(top-down) in the warm seasons except the winter.

Spatio-Temporal Variation Characteristics of Primary Productivity and Environmental Factors of Shellfish Mariculture in Jaran Bay, Korea (자란만 패류양식어장의 기초생산력 및 환경인자 변동 특성)

  • Lee, Dae In;Choi, Yong-Hyeon;Hong, SokJin;Kim, Hyung Chul;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.721-734
    • /
    • 2022
  • This study analyzed the spatio-temporal variation characteristics of major environmental factors such as primary productivity (PP), chlorophyll a, nutrients, sinking particle matters, and organic contamination and biochemical composition of surface sediment on a monthly basis for approximately 2 years around shellfish mariculture in Jaran Bay, Korea. In addition, PP in Jaran Bay was compared with that in other coastal areas and related policy plans were proposed. The average PP of the study area was high in summer and autumn with 6.43~115.43 mgC m-2 hr-1 range. This was lower than that in Gamak Bay and Masan Bay, whereas higher than that in Garorim Bay and the West Sea. The PP in coastal waters, where many aquaculture farms were distributed, significantly fluctuated. The different size compositions of phytoplanktons constituting chlorophyll a slightly varied by month, and little restriction existed on the productivity of phytoplanktons owing to the depletion of nutrients. Typically, the Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplanktons. The biochemical composition of particulate organic matters in the water column showed the highest carbohydrates, but lipids and protein contents were high in surface sediments. The concentration of TOC and AVS of the surface sediments was high at inside of bay, and sometimes, exceeded the environmental criteria of fishing grounds. The organic C:N ratio of sediments ranged from 8.1 to 10.4 on average. PP had the highest correlation with chlorophyll a, nitrogen and protein of particle organic materials. Recently, chlorophyll a, DIN, and DIP of water column trends tended to decrease, however, the contamination of sediments increased. Considering the annual PP of 125.9 gC m-2 yr-1 and mariculture area (oyster) of 4.97 km2, the annual carbon production from phytoplanktons was estimated to be about 625 tons, and the annual total wet weight of shellfish (oyster) was estimated to be about 6,250 tons.

Development and Application of the Criteria of Evaluating Creative Product in Mathematical Gifted Education (수학영재의 창의적 산출물 평가 준거 개발 및 적용)

  • Lee, Chong-Hee;Kim, Ki-Yoen
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.301-322
    • /
    • 2010
  • In this study, researchers developed the criteria evaluating mathematically gifted students' creative products, which contain such evaluation headings as cognitive abilities(; creativity, analytic thinking, expert skill and knowledge), performing ability of the Mathematically Gifted-Creative Problem Solving process. And then a case study is carried out to apply the criteria to an actual condition of mathematically gifted education. This case study shows that how teachers can apply those of model and criteria in actual condition of the mathematically gifted education. Through the criteria above mentioned, the characteristics of creative productivity can be grasped clearly and evaluated in detail.

  • PDF

Organic Matter Sources in a Reservoir (Lake Soyang); Primary Production of Phytoplankton and DOC, and External Loading (식물플랑크톤의 세포외배출유기물을 고려한 소양호의 1차생산과 유기물 부하)

  • Nam, Kung-Hyun;Hwang, Gil-Son;Choi, Kwang-Soon;Kim, Chul-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.166-174
    • /
    • 2001
  • The autochthonous and allochthonous organic carbon loading were measured in Lake Soyang, to estimate the amount of carbon loading into the lake and the contribution of their sources to tile lake's carbon loading. Autochthonous carbon loading was estimated from phytoplankton primary production with the extracellular organic carbon (EOC). Allochthonous loading was determined by measuring dissolved organic carbon (DOC) and particulate organic carbon (POC) concentration in the main inflowing Soyang River. Both autochthonous and allochthonous organic carbon loading were high during the svmmer, from July to September, and accounted for 43.2% and 71.7% of the annual loading, respectively. Primary productivity was elevated up to $1,000\;mgC\;m^{-2}\;d^{-1}$ during summer and lowest in winter. EOC production from phytoplankton was also large in summer, resulting in a high DOC concentration in the lake water. Primary production of phytoplankton and allochthonous organic matter loading from the watershed contributed to 53.6% and 46.4% of total loading, respectively. The EOC production accounted far $4.4{\sim}21.2%$ of POC primary production, implying that EOC production of phytolankton must be considered in estimation of primary production.

  • PDF

Contribution of Nutrient Flux through the Korea Strait to a Primary Production in the Warm Region of the East Sea (동해 난수역의 일차생산에 대한 대한해협 유입 영양염의 기여)

  • Lee, Tongsup;Rho, Taekeun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.65-69
    • /
    • 2013
  • In situ measurement of a primary production in East Sea, a marginal sea with a fair accessibility, is nonetheless an arduous task because of dynamic variability. In this study, we estimated the mean value of background (gross) primary production over the warm region of the East Sea based on a biogeochemical hypothesis. We propose an immiscible-shoaling hypothesis for the estimation of primary production, which assumes that primary production in the warm region occurred only by the nutrient supply through the Korea Strait. Annual primary production thus estimated is $209\;gC\;m^{-2}\;y^{-1}$, which is comparable to the satellite-based estimates of net primary production in the region. However, since this hypothesis assumes that primary production is based on only the new nutrients supplied to the system, primary production would increase by 40% if we release the assumption, and assume f = 0.6. This suggests that nutrient influx through the Korea Strait alone is more than enough to support primary production previously reported. Primary production may increase as much as two times if we considered other external perturbations excluded intentionally to estimate the background level of primary production, such as coastal upwelling, submerged ground water discharge, aeolian input, ocean dumping, and mixing by typhoons as well as the contribution of cyanobacteria that has not been quantified in the region. This implies the primary production in the warm region of the East Sea would be comparable to that of the Peru upwelling region with f = 0.6.

Primary Productivity and Nitrogenous Nutrient Dynamics in the East Sea of Korea (한국 동해의 기초생산력과 질소계 영양염의 동적관계)

  • Chung, Chang Soo;Shim, Jae Hyung;Park, Yong Ghul;Park, Sang-Gap
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 1989
  • The daily net primary production by phytoplankton and ammonium excretion by macrozooplankton (> $350{\mu}m$) were measured to understand the nitrogenous nutrient dynamics in the southern part of the East Sea of Korea. At most of the staions, water columns were well stratified and strongly developed pycnoclines and matching nutriclines could be found near the 20-60m. Total chlorophyll ranged between $1.22-3.24{\mu}g$ ChI/l and nano-fractions of chlorophyll ranged from 43.2 to 99.6% in the surface layer. The daily net primary production by phytoplankton ranged from 0.75 to 2.04 gC/$m^2$/d and averaged to be 1.5 gC/$m^2$/d. 1t is evidenced that the primary production and chlorophyll content are relatively high in frontal waters where the North Korean Cold Water meets with the East Korean Warm Water. The turnover time of nitrate in the euphotic zone ranged from 0.2 day to 1.6 day and averaged to be 0.8 day. The N:P ratio of the study area shows on the average 13.4 which indicates nitrogenous nutrient to be the limiting factor for phytoplankton growth. Ammonium excretion by macrowoplankton averaged out to 1.3mg at-N/$m^2$/d, and contributed 7.3% of daily total nitrogen requirement by phytoplankton in this area. Calculation of upward flux of nitrate to the surface mixed layer from the lower layer approximates 7% of nitrogen requirement by phytoplankton.

  • PDF

The Seasonal Variation of Primary Productivity in the Antarctic Coastal Ecosystems (남극 연안생태계에서 일차생산력의 계절변화)

  • Kim, Hae-Cheol;Yang, Sung-Ryull;Pae, Se-Jin;Shim, Jae-Hyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.80-89
    • /
    • 1998
  • To understand the temporal variation of phytoplankton community in the Antarctic coastal ecosystem, physicochemical parameters, chlorophyll a, and primary productivity were measured as a component of the 7th KARP (Korea Antarctic Research Program) in 1994. Data were collected every month between February and December except four months (June-September) when the study area was frozen. Chlorophyll a concentrations ranged from negligible to 3.03 ${\mu}g/l$, averaging 0.63 ${\mu}g/l$. The primary productivity ranged 0.53-18.95 mg C/$m^3{\cdot}day$, and the depth-integrated primary productivity ranged 41.28-560.20 mg C/$m^3{\cdot}day$. A positive relationship was observed between the phytoplankton biomass and irradiance ($r^2$=0.29, p < 0.01). The degree of correlation between the primary productivity and irradiance ($r^2$=0.85, p < 0.001) was significantly higher than that between the phytoplankton biomass and irradiance. However, neither temperature nor inorganic nutrients seem to affect the temporal variation of primary productivity.

  • PDF

Estimation of Carrying Capacity in Kamak Bay( I ) - Estimation of Primary Productivity Using the Eco-hydrodynamic Model- (가막만의 환경용량 산정( I ) -생태계모델을 이용한 기초생산력 산정-)

  • CHO Eun Il;PARK Chung Kil;LEE Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.369-385
    • /
    • 1996
  • The eco-hydrodynamic model was used to estimate the primary productivity of the oyster culture grounds in Kamak Bay. It is composed of the three-dimensional hydrodynamic model for the simulation of water flow and ecosystem model for the simulation of phytoplankton. The ecosystem model was applied to simulate phytoplankton biomass during culturing period in condition of no oyster culture grounds. The field surveys were conducted from May, 1994 to March, 1995 in Kamak bay. The results showed the concentration of chlorophyll $\alpha$ to be $1.00\~23.28\;{\mu}g/l$ in the surface layer, $1.27\~29.97\;{\mu}g/l$ in the middle layer and $1.23\~23.08\;{\mu}g/l$ the bottom layer. In monthly variations of chlorophyll $\alpha$ concentration, very high concentration were found in July, 1994 and very low concentrations in December, 1994. As the results of three-dimensional hydrodynamic simulation, the computed tidal currents ave mainly toward the inner part of bay through Yeosu Harbor and the southern mouth of a bay during the flood tide. The computed residual currents were dominated southward in Yeosu Harbor and eastward in the mouth of bay and also showed strong clockwise water circulation at the mouth of bay. The pattern between the simulated and observed tidal ellipses at three stations was very similar. The mean relative errors of all levels between the simulated and observed phytoplankton biomass at 14 stations in Kamak Bay were $13.81\%,\;9.31\%\;and\;17.84\%$, respectively. The results of phytoplankton biomass simulation showed that the biomass increased from June to September and rapidly decreased to December and then slowly increased to March. Primary productivity was estimated in the range of $0.99\~10.20gC/m^2/d$ with the average value of $4.43gC/m^2/d$ in condition of no oyster culture grounds. Primary productivity was rapidly increased from lune to August and rapidly decreased to December and then slowly increased from January to March in Kamak Bay.

  • PDF