• 제목/요약/키워드: 생산관리목표

검색결과 322건 처리시간 0.02초

라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정 (Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data)

  • 메안 P 안데스;노미영;임미영;최경이;정정수;김동필
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.384-395
    • /
    • 2023
  • 증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀(MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min-1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.

주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여 (An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses)

  • 이광남
    • 한국산림과학회지
    • /
    • 제70권1호
    • /
    • pp.7-16
    • /
    • 1985
  • 임목(林木)의 주체성인(主體成因)인 수간(樹幹)에 대한 각종(各種) 성장인자간(成長因子間)의 정준상관(正準相關)과 그의 관계적(關係的) 배경(背景) 및 수간(樹幹)의 총합적(總合的)인 변동분석(變動分析)에 의(依)한 수간적(樹幹的) 특징(特徵)을 파악(把握)함에 있어, 그의 최적기법(最適技法)을 탐색(探索)하기 위한 시도(試圖)로서 일본(日本)잎갈나무(Larix leptolepis)에 주성분(主成分) 및 정준상관분석법(正準相關分析法)을 도입적용(導入適用)하고, 얻어진 결과(結果)를 다음과 같이 요약(要約)한다. 1) 정형수(正形數)($x_8$)를 제외(除外)한 모든 성장인자(成長因子) 즉(卽), 수고(樹高)($x_1$), 지하고(枝下高)($x_2$), 망고(望高)($x_3$), 흉고직경(胸高直徑)($x_4$), 중앙직경(中央直徑)($x_5$), 수관폭(樹冠幅)($x_6$) 및 간재적(幹材積)($x_7$) 등(等)의 각(各) 인자간(因子間)에 강약간(強弱間)의 상관(相關)이 있으며, 특(特)히 흉고직경(胸高直徑), 수고(樹高) 및 중앙직경(中央直徑) 등(等)은 간재적(幹材積)과 고도(高度)의 상관(相關)이 있다(표(表) l 참조(參照)). 2) (1) 상장성장인자(上長成長因子)인 수고(樹高), 지하고(枝下高) 및 망고(望高) 등(等)의 합성변량(合成變量)과 간재적간(幹材積間), (2) 비대성장인자(肥大成長因子)인 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수관폭(樹冠幅) 등(等)의 합성변량(合成變量)과 간재적간(幹材積間), (3) 상장(上長) 및 비대성장인자(肥大成長因子)를 총망라(總網羅)한 6개인자(個因子)의 합성변량(合成變量)과 간재적간(幹材積間)의 정준상관계수(正準相關係數)와 정준변량(正準變量)이 각각(各各) $${(1)\;{\gamma}_{u1,v1}=0.82980^{**},\;\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3}\\{(2)\;{\gamma}_{u1,v1}=0.98198^{**},\;\{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6}\\{(3)\;{\gamma}_{u1,v1}=0.98700^{**},\;\{u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6}$$ 등(等)과 같이 되어, 어느 경우(境遇)에서도 고도(高度)의 정준상관(正準相關)을 가지며, (1)의 경우(境遇)에는 수고(樹高)가, (2)의 경우(境遇)에는 흉고직경(胸高直徑)이, (3)의 경우(境遇)에는 흉고직경(胸高直徑)과 수고(樹高)가 각각(各各)의 정준상관(正準相關)에 절대적인 기여(寄與)를 하는 것으로서, 각종(各種) 질적성장(質的成長)의 총합특성(總合特性)은 이들 인자(因子)의 막강한 영향력(影響力)에 의해서 형성(形成)되며, 특(特)히 (3)의 경우에서 간재적(幹材積)과의 정준상관(正準相關)에 미치는 흉고직경(胸高直徑)의 영향력(影響力)은 기타(其他)의 인자(因子)에 비(比)하여 판이(判異)하게 큰 것으로 밝혀지고 있다(표(表) 2 참조(參照)). 3) 상장성장인자(上長成長因子)인 수고(樹高), 지하고(枝下高) 및 망고(望高) 등(等)의 합성변량(合成變量)과 비대성장인자(肥大成長因子)인 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수관폭(樹冠幅) 등(等)의 합성변량간(合成變量間)의 정준상관계수(正準相關係數)와 정준변량(正準變量)이 $${\gamma}_{u1,v1}=0.78556^{**},\;\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076z_5+0.05285z_6$$와 같이 됨에 따라, 각종 상장성장인자(上長成長因子)와 비대성장인자간(肥大成長因子間)의 고도(高度)의 정준상관(正準相關)에 있어 수고(樹高)와 흉고직경(胸高直徑)만의 기여도(寄與度)가 극(極)히 현저한 것으로서, 상장성장(上長成長)의 총합특성(總合特性)은 수고(樹高)에 의해서, 비대성장(肥大成長)의 총합특성(總合特性)은 흉고직경(胸高直徑)에 의해서 각각(各各) 형성(形成)된다는 사실(事實)이 확인(確認)된 것이다. 따라서 양인자(兩因子)에 대한 간재적계측(幹材積計測)에 있어서의 필수유력인(必須有力因子)로서의 과학성(科學性)이 입증(立證)된 것이라 생각한다(표(表) 2 참조(參照)). 4) 수간(樹幹)의 8개성장인자(個成長因子) 즉(卽), 8차원(次元)의 정보(情報)(특성치(特性値))를 설정(設定)된 유효목표(有效目標) 85%에 따라 3차원(次元)으로 간략화(簡約化)된 총합특성치(總合特性値) 즉(卽), 제(第) 1 ~ 제(第) 3 주성분(主成分)은 다음과 같다. 제(第) 1 주성분(主成分)($Z_1$); $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$ 제(第) 2 주성분(主成分)($Z_2$) ; $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$ 제(第) 3 주성분(主成分)($Z_3$) ; $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$ 제(第) 1 주성분(主成分)($Z_1$)은 기여율(寄與率)이 63.26%나 되는 매우 높은 정보흡수력(情報吸收力)을 가진 "크기의 인자(因子)(size factor)"로서, 그의 주성분득점(主成分得點)(principal component score)은 인자부하량(因子負荷量)이 매우 높은 간재적(幹材積), 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수고(樹高) 등(等)에 의해써 결정(決定)되며, 제(第) 2 주성분(主成分)($Z_2$)은 입체적(立體的) 형상(形狀)의 지표(指標) 즉(卽), 수간(樹幹)의 입체적(立體的) 상사성(相似性)과 완구도(完溝度)를 나타내주는 "형상(形狀)의 인자(因子)(shape factor)"로서, 그의 score는 정형수(正形數)의 절대적(絶對的)인 영향력(影響力)에 의(依)해서 형성(形成)되며, 제(第) 3 주성분(主成分)($Z_3$)은 상장성장(上長成長)과 비대성장(肥大成長)과의 역관계(逆關係)의 현상(現象) 즉(卽), 수간(樹幹)의 세장(細長)(또는 굵고 짧음)의 정도를 표시(表示)하는 성장형상(成長形狀)의 지표(指標)로서, 이는 제(第) 2의 "형상(形狀)의 인자(因子)"가 된다. 이상(以上) 3개주성분(個主成分)은 그의 누적기여율(累積寄與率)이 88.36%로서 만족스러운 정보흡수역량(情報吸收力量)을 지니고 있다(표(表) 3 참조(參照)). 5) 본(本) 연구(硏究)에 적용(適用)된 주성분(主成分) 및 정준(正準) 상관분석법(相關分析法)은 적극적(積極的)인 이용개발(利用開發)에 따라서는 삼림계측(森林計測)(임목성장(林木成長)), 지위판정분류(地位判定分類), 삼림(森林) 및 임산업(林産業)의 경영진단(經營診斷), 임산가공(林産加工)(품(品))의 생산관리(生産管理) 및 기지(其地) 총합특성치(總合特性値)의 산정(算定)을 필요(必要)로 하는 분야(分野)에 많은 기여(寄與)가 있을 것으로 사료(思料)된다.

  • PDF