• Title/Summary/Keyword: 생물학적 분해 불가능한 COD

Search Result 3, Processing Time 0.019 seconds

Reaction Characteristics of Dairy Wastewater through Aerobic Biodegradability Assessment (호기성 생분해도 평가를 통한 유가공 폐수의 반응특성)

  • Choi, Yong-Bum;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2018
  • The purpose of this study is to investigate the characteristics of the substrate of dairy wastewater through aerobic biodegradation and to use the results as the basic data for the efficient treatment of dairy wastewater. The SCODcr of the part of the matter that consisted of readily biodegradable organics (Ss) was 84.2%, which is higher than those of seafood processing wastewater (75.8~77.9%) and pigpen wastewater (58.2%). The proportion of non-biodegradable organics (SI) ranged from 5.6% to 6.4%, and the proportion of inert organics (SIi) generated by microbial metabolism ranged from 3.6 to 3.7%. The content coefficient (YI) of the non-biodegradable dissolved organic matter was in the range of 0.092 to 0.099, and the generation coefficient (Yp) of the inert substance produced by the microbial metabolism was in the range of 0.039 to 0.040. The analysis results of the organic component coefficient showed that approximately 91.0% of the dissolved organic matter of the dairy wastewater was biodegradable, and approximately 92.5% of the dissolved organic matter was the Ss component. Furthermore, the proportion of biodegradable organic matter in the total organic matter (TCODcr) was 89.3%. The proportions of non-biodegradable organics (SI) and non-biodegradable suspended organics (XI) were 3.0% and 7.7%, respectively, which are lower than those in similar wastewater. This means that the milk processing wastewater has a high aerobic biodegradability.

Fundamental Study on Adsorption Capacity and Utilization of Coal Waste as Adsorbents (석탄폐석의 흡착능 및 흡착제로의 활용방안에 관한 기초 연구)

  • 한동준;임재명;이찬기;이해승
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.61-72
    • /
    • 1997
  • This research aims to remove the heavy metals, nonbiodegradable COD(NBDCOD), and color using the coal waste. The experimental by heat treatment was performed to advance the adsorption capacity. The results are as follows ; i) The coal waste had the adsorption capacity of heavy metals and the rates were in the range of 20 to 30 percents. ii) The heat treatment was the optimum condition that the reaction time was 6 hours at $500^{\circ}C$, , iii) In the column experimen, non-treated coal waste removed the COD and color in the range of 20 to 60 percents. iv) Heat-treated coal waste showed higher removal rate of the color in biological effluent, and heavy metal and COD removal rates were changed by the filteration rates.

  • PDF

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater (가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향)

  • Jang, Jae Kyung;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.578-582
    • /
    • 2015
  • It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.