본 논문은 자연이미지에 포함된 텍스트 영역을 찾기 위한 방법으로서 기존에 제안한 색 분산 특징을 이용한 방법에서 분산이 제대로 추출되지 않는 문자 획들에 대한 복원 방법을 제안한다. 이전의 색 분산 특징을 이용한 추출방법에서는 고정된 크기의 수평 및 수직 분간 추출 윈도우를 사용함으로서 문자 획이 두껍거나 긴 경우에는 색 분산이 제대로 추출되지 않는 단점이 있었다. 따라서 본 논문에서는 미 추출된 색 분산을 연결요소 외곽사각형의 기하학적인 정보와 경험적인(Heuristic) 지식을 함께 이용하여 복원하는 방법을 제안한다. 제안한 방법은 다양한 종류의 디지털 카메라와 휴대폰 카메라를 이용해서 취득한 문서 유형의 이미지와 간판, 거리 표지판 등의 자연이미지를 사용하여 테스트 하였으며, 특히 큰 글자를 포함하는 자연이미지에 대해서도 텍스트 추출의 정확성이 향상된 것을 확인할 수 있었다.
이미지에 포함되어 있는 텍스트들은 이미지의 내용을 함축적이며 구체적으로 표현하는 정보를 갖고 있다. 본 논문에서는 이러한 정보를 정확히 추출하기 위해서 색 변화 특징을 이용한 텍스트 영역 추출 방법을 제안한다. 관찰에 의하면 이미지 내의 텍스트들은 주변 배경과의 색 변화가 존재하며, 이러한 색 변화를 3차원 RGB공간에서 표현한다면, 명도이미지에서의 밝기 변화에서 표현하기 어려운 영역들을 강조시킬 수 있으며, 조명 변화에도 민감하지 않은 결과를 만들어 낼 수 있다. 색 변화 정도는 3차원 RBG 공간에서의 색 분산(Variance)으로 측정한다 처리 과정으로서 우선 수평 및 수직 방향의 분산 이미지를 구하는데, 텍스트 영역은 두 방향의 분산 값이 모두 높은 특징이 있다. 다음으로 두 결과의 논리적 AND 연산을 수행하여 불필요한 잡영들을 제거한 후 연결요소를 분석, 검증하여 영역을 최종 확정한다. 다양한 종류의 자연이미지로 제안한 방법을 검증한 결과 밝기 변화 또는 색 연속성 특징들을 이용한 방법에서 찾기 어려운 텍스트 영역들을 찾을 수 있는 것을 확인할 수 있었다.
이미지에 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 정보로서 이러한 정보를 실시간에 찾아내서 인식한다면 다양한 응용에 활용할 수 있다. 본 논문에서는 카메라로 취득한 다양한 종류의 이미지로부터 텍스트를 추출하는 방법과 추출된 영역에서 텍스트를 분리하는 방법을 새롭게 제안한다. 텍스트 영역 추출을 위해서 RGB 색 공간에서 색 분산을 특징으로 제안하며, 텍스트 영역 분리를 위해서 RGB 색 공간에서 개선된 K-means 병합을 제안한다. 실험은 디지털 카메라와 핸드폰 카메라로 취득한 다양한 종류의 문서유형 이미지와 실내외의 일반적인 자연이미지를 사용하였으며, ICDAR 콘테스트[1] 이미지의 일부도 사용하였다.
이미지에 인위적 또는 자연적으로 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 중요한 정의이다. 이러한 정보를 실시간에 추출하여 정확히 인식할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 자연이미지에 포함된 장면 텍스트를 추출하는 방법으로서 텍스트의 색 연속성, 자기 변화 및 색 변화와 같은 낮은 수준의 이미지 특징으로 텍스트 후보 영역을 찾고, 다해상도 (Multi-resolution) 웨이블릿(Wavelet) 변환을 이용하여 높은 수준의 텍스트 특징인 획의 구성 여부로 검증하는 계층적인 구조를 제안한다. 색 연속성 특징은 대부분의 텍스트는 동일한 색으로 구성된다는 특징을 이용하는 것이고, 밝기 변화 특징은 텍스트 영역은 주변과의 밝기 변화가 존재하며 에지 밀도가 높은 특징을 이용한다. 또한, 색 변화 특징은 텍스트 영역은 주변 배경과의 색 변화가 존재하며, 밝기 변화보다 민감한 색 분산 값으로 표현할 수 있다는 장점을 이용한다. 높은 수준의 텍스트 특징으로서 다해상도 웨이블릿 변환을 이용하여 텍스트 획의 방향성 정보를 추출하고, 추출된 정보를 SVM(Support Vector Machine) 분류기로 검증하여 최종 영역을 확정한다. 제안한 방법을 다양한 종류의 이미지에 적용한 결과 배경이 복잡해도 비교적 안정적으로 텍스트 영역을 추출하는 것을 확인할 수 있었다.
다양한 디지털 기기 활용의 증가로 인해 멀티미디어 데이터가 증가됨에 따라 내용 기반으로 검색하는 기술이 연구되고 있다. 내용 기반 검색을 위해 멀티미디어에서 추출된 고차원 특징 벡터가 대용량이 되면서 고차원 데이터를 분산해서 관리하는 색인 기법이 필요하다. 본 논문에서는 대용량 멀티미디어 데이터에서 유사한 이미지를 검출하기 위한 분산 고차원 색인 기법을 제안한다. 제안하는 기법은 마스터/슬레이브 구조로 되어 있다. 마스터 서버의 색인 구조는 그리드 방식을 사용하여 검색 요청 시 탐색하는 노드를 감소시킨다. 슬레이브 서버의 색인 구조는 구 형태로 색인하여 범위 질의와 최근접 질의를 효율적으로 검색한다.
본 논문은 정지 화상에 대한 CBIR(Content-Based Image Retrieval)방법 중 칼라 특성을 이용해서 영상 내 공간 정보를 충분하게 표현할 수 있는 알고리즘을 제안한다. 일반적으로 칼라 특성을 이용한 CBIR은 영상 내 공간정보를 충분하게 표현하지 못하는 단점을 지니고 있다. 이에 기존 논문에서는 인위적으로 영상을 여러 개로 분할하는 방법 등으로 공간정보를 표현하고자 하였지만 특징벡터의 수가 급격히 늘어남에 따라 검색효율이 저하된다는 단점을 가지고있다. 본 논문에서는 기존의 방법을 칼라 오브젝트의 추출 방법에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소, 확대)에 탁월한 성능을 보이는 칼라 오브젝트의 3차 관계를 이용한 방법을 소개한다. 주어진 영상으로부터 양자화된 24개의 버킷을 생성해서 각 버킷 내의 칼라에 대한 색의 표준 편차로 색의 분산 정도틀 나타내고, 히스토그램의 빈도수가 높은 세 개 버킷의 평균 칼라 위치를 계산해서 그들의 상호 각도를 추출하여 영상의 특징 벡터로 사용한을 제안하였다. 실험결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을 수 있었으며, 계산량도 적어 효율적임을 보여 주었다.
지금까지 제안된 분산 고차원 색인의 대부분은 균일한 분포를 가지는 데이터 집합에서 좋은 검색 성능을 나타내나, 편향되거나 클러스터를 이루는 데이터의 집합에서는 그 성능이 크게 감소된다. 본 논문은 강하게 클러스터를 이루거나 편향된 분포를 가지는 데이터 집합에 대한 분산 벡터 근사 트리의 k-최근접 검색 성능을 향상시키는 방법을 제안한다. 기본 아이디어는 전체 데이터를 클러스터링하는 상위 트리의 말단 노드가 담당하는 데이터 공간의 크기를 계산하고, 그 공간 상의 특징 벡터를 근사하는 데 사용되는 비트의 수를 달리하여 벡터 근사의 식별 능력을 보장하는 것이다. 즉, 고밀도 클러스터에는 더 많은 수의 비트를 할당하는 것이다. 우리는 합성 데이터와 실세계 데이터를 가지고 분산 hybrid spill-tree와 기존 분산 벡터 근사 트리와의 성능 비교 실험을 수행하였다. 실험 결과는 확장된 분산 벡터 근사 트리의 검색 성능이 균일하지 않은 분포의 데이터 집합에서 크게 향상되었음을 보인다.
SAN(Storage Area Network)이 최근 대용량 데이터를 효율적으로 관리하기 위한 차세대 저장 장치로 각광받고 있다. 이 SAN에는 이미지, 동영상, 지도, 캐드 데이터와 같은 대용량의 고차원 특징을 갖는 데이터들이 저장되어 관리 될 것이다. 따라서 SAN 환경에서 이들을 보다 빠르고 정확하게 검색할 수 있는 효율적인 고차원 색인구조가 필요하다. SAN 환경은 저장 장치를 공유하는 형태의 병렬 환경이라 볼 수 있다. 이 논문에서는 SAN의 병렬성을 충분히 이용해서 고차원 데이터를 색인할 수 있는 방법을 제안한다. 제안하는 고차원 색인 구조는 하나의 노드를 여러 디스크에 분산시켜 팬-아웃을 증가시키고 트리의 높이를 줄임으로서 검색성능을 향상시킨다. 또한 범위 질의와 K-최근접 질의 수행시 병렬성을 최대화하는 방법을 제안한다.
본 논문에서는 입력 영상에 대한 촬영 장면의 조명 색도를 추정하는 방법을 제안한다. 조명 기준영역을 이용하여 입력영상의 촬영 장면에 가장 근접한 조명 색도를 추정한다. 기존의 방법은 일정한 수의 기준조명 정보를 이용한다. 입력 영상으로부터 화소의 색도분포 정보와 기준 조명에 대한 미리 준비된 색도 집합을 대조하여 겹치는 면적이 가장 큰 기준 조명을 해당 입력 영상에 대한 장면 조명으로 간주한다. 겹치는 면적을 계산하는 과정에서 각 기준 조명에 대한 가중치를 가우시안 분포 형태로 적용하였으나, 분산 값에 대하여 명확한 기준을 제시하지 못하였다. 제안한 방법은 주어진 기준조명으로부터 독립적인 기준색도 영역을 추출하고, 입력영상의 모든 화소에 대하여 RGB 칼라좌표계의 r-g 색도 평면에서의 특징치를 계산한 다음, 독립적인 색도영역과 입력영상으로부터의 특징치를 이용하여 유사도를 평가한다. 유사도가 가장 높게 나타나는 조명을 해당 영상의 조명 색도 성분으로 추정하였다. 데이터베이스의 영상과 기준조명 색도를 이용한 성능평가에서 제안한 방법은 기존의 기본 방법에 비하여 평균 60% 정도의 개선을 보였고, 기존의 가우시안 분산 값이 0.1인 경우에 비하여 53% 내외의 개선 성능을 보였다.
최근 정보 사회에서 중요한 기술로 자리잡은 멀티미디어 정보 검색에 대한 다양한연구가 진행 중에 있다. 본 논문은 정지 화상에 대한 CBIR(Content-Based Image Retrieval)방법 중 칼라 정보를 이용한 방법에서 공간 정보를 충분하게 표현할 수 있는 알고리즘을 제안한다. 일반적으로 칼라 정보를 이용한 CBIR에서는 공간정보를 표현하기 위하여 인위적으로 영상을 여러 개로 분할하는 방법이나 영상의 히스토그램 내에서 영상의 위치 정보를 이용하는 방법 등이 연구되었다. 본 논문에서는 기존의 방법을 칼라 오브젝트의 추출 방법에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소, 확대)에 탁월한 성능을 보이는 3차 칼라 오브젝트 관계를 이용한 방법을 소개한다. 제안된 알고리즘은 주어진 영상으로부터 양자화 된 24개의 버킷(bucket)을 생성해서 각 버킷 내의 칼라에 대한 색의 표준 편차로 색의 분산 정도를 나타내고, 빈도수가 높은 3개 버킷의 평균 칼라 위치를 계산해서 그들의 상호 각도를 추출하여 영상의 특징 벡터로 사용하였다. 실험결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을 수 있었으며, 계산량도 적어 효율적임을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.