• Title/Summary/Keyword: 색상 분할

Search Result 388, Processing Time 0.028 seconds

Weekly Supervised Video Object Segmentation based on Multiple Random Walker (약한 지도 학습의 다중 랜덤워크 기반 동영상 객체 분할)

  • Heo, Minhyeok;Lim, Kyungsun;Kim, Han-Ul;Koh, Yeong Jun;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.147-148
    • /
    • 2017
  • 본 논문에서는 간단한 사용자 입력과 다중 랜덤 워크(multiple random walker) 기법을 기반으로 동영상 내의 주요 객체를 분할하는 알고리즘을 제안한다. 우선 동영상의 첫 프레임에서 점 형태의 사용자의 입력을 받아 대략적인 객체와 배경의 위치를 얻고, Lab 색상의 측지거리를 이용하여 객체와 배경의 중요도 지도를 얻는다. 다음으로 영상을 슈퍼 픽셀 단위로 분할하고, 다중 랜덤 워크 기법을 적용하여 객체 분할을 수행한다. 랜덤 워크 기법 적용 시, 중요도 지도를 각 랜덤 워커의 초기 분포로 설정하고, 노드간 색상과 움직임 차이를 이용하여 전이 행렬을 계산한다. 마지막으로 결과를 정련한 뒤, 다음 프레임으로 분할 결과를 전파하여 시간적 일관성을 유지한다. 실험을 통하여 제안 기법이 기존 기법에 비하여 우수한 객체 분할 성능을 보임을 확인한다.

  • PDF

Practical Page Segmentation using Connected Components and Color Information (연결요소와 색상정보를 이용한 실제적 문서영상 분할)

  • Kim, Pyeoung-Kee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.273-285
    • /
    • 2000
  • While page segmentation is an important step in document recognition, there haven's been many researches on it. More improvement is still needed on the segmentation of document elements in complicated or color documents. In this paper, I present a new page segmentation method which can segment pages with multiple columns, dotted lines, graphics, and photographs. I extract all connected components using contour following and combine them depending on the size and positional information of them. Separate text location is done for non-text color regions to extract possible text lines. To see the performance of the proposed method, experiments are done for 180 documents. Four commercial OCR programs are also tested and the proposed method showed the best result.

  • PDF

The Robust Skin Color Correction Method in Distorted Saturation by the Lighting (조명에 의한 채도 왜곡에 강건한 피부 색상 보정 방법)

  • Hwang, Dae-Dong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1414-1419
    • /
    • 2015
  • A method for detecting a skin region on the image is generally used to detect the color information. However, If saturation lowered, skin detection is difficult because hue information of the pixels is lost. So in this paper, we propose a method of correcting color of lower saturation of skin region images by the lighting. Color correction process of this method is saturation image acquisition and low-saturation region classification, segmentation, and the saturation of the split in the low saturation region extraction and color values, the color correction sequence. This method extracts the low saturation regions in the image and extract the color and saturation in the region and the surrounding region to produce a color similar to the original color. Therefore, the method of extracting the low saturation region should be correctly preceding. Because more accurate segmentation in the process of obtaining a low saturation regions, we use a multi-threshold method proposed Otsu in Hue values of the HSV color space, and create a binary image. Our experimental results for 170 portrait images show a possibility that the proposed method could be used efficiently preprocessing of skin color detection method, because the detection result of proposed method is 5.8% higher than not used it.

Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image (RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할)

  • Yang, Hyuk Jin;Kim, Dong Hyun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1603-1613
    • /
    • 2017
  • This paper proposes a method for effectively segmenting the hand region using a widely popular RGB color-based webcam. This performs the empirical preprocessing method four times to remove the noise. First, we use Gaussian smoothing to remove the overall image noise. Next, the RGB image is converted into the HSV and the YCbCr color model, and global fixed binarization is performed based on the statistical value for each color model, and the noise is removed by the bitwise-OR operation. Then, RDP and flood fill algorithms are used to perform contour approximation and inner area fill operations to remove noise. Finally, ROI (hand region) is selected by eliminating noise through morphological operation and determining a threshold value proportional to the image size. This study focuses on the noise reduction and can be used as a base technology of gesture recognition application.

The tongue region detection and color information analysis (혀 영역 검출 및 색상 정보 분석)

  • Gang, Seon-Gyeong;Jeong, Seong-Tae
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.374-377
    • /
    • 2012
  • 본 논문은 다양한 조명환경에서의 실시간 설진 진단을 위한 혀 영역 검출 및 영역 분할 방법을 제안한다. 임의의 환경에서 얻어낸 이미지에서 혀 영역의 추출과 추출된 영역에서의 혀의 상태를 진단하는 데는 많은 어려움이 있다. 다양한 조명환경에서의 영상으로부터 혀 영역을 추출하기 위하여 본 논문에서는 ASM을 이용한다. 검출된 영역을 6개의 영역으로 영역 분할한 다음 HSV영상으로 변환하고 색상 정보를 분석함으로써 신체의 건강상태를 판별하는 방법을 제한한다.

  • PDF

Smoke color analysis of the standard color models for fire video surveillance (화재 영상감시를 위한 표준 색상모델의 연기색상 분석)

  • Lee, Yong-Hun;Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4472-4477
    • /
    • 2013
  • This paper describes the color features of smoke in each standard color model in order to present the most suitable color model for somke detection in video surveillance system. Histogram intersection technique is used to analyze the difference characteristics between color of smoke and color of non smoke. The considered standard color models are RGB, YCbCr, CIE-Lab, HSV, and if the calculated histogram intersection value is large for the considered color model, then the smoke spilt characteristics are not good in that color model. If the calculated histogram intersection value is small, then the smoke spilt characteristics are good in that color model. The analyzed result shows that the RGB and HSV color models are the most suitable for color model based smoke detection by performing respectively 0.14 and 0.156 for histogram intersection value.

Multiple color normalization for effective object detection (효율적 객체정보 검출을 위한 다중색상 정규화)

  • 이은선;김상훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.589-591
    • /
    • 2002
  • 본 연구에서는 영상안에서의 중요한 객체정보를 검출하기 위한 전처리 과정으로 효율적인 색상정보 정규화에 의한 영역분석 방법을 제안한다. 다중색상 정규화는 기존의 화소내 색상성분간의 정규화와 모든 화소에 대한 성분별 정규화를 복합적으로 사용함으로써, 객체의 영역들이 갖는 고유 색상성분의 분포를 좀더 특정 공간에 집중시키고 영상분할을 용이하게 한다. 이러한 방법의 효과를 입증하기 위해 가상의 입력영상을 제작하여 기존의 알고리즘과 본 논문에서의 방법을 함께 적용, 비교평가한다.

  • PDF

Video Segmentation and Video Browsing using the Edge and Color Distribution (윤곽선과 컬러 분포를 이용한 비디오 분할과 비디오 브라우징)

  • Heo, Seoung;Kim, Woo-Saeng
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2197-2207
    • /
    • 1997
  • In this paper, we propose a video data segmentation method using edge and color distribution of video frames and also develop a video browser by using the proposed algorithm. To segment a video, we use a 644-bin HSV color histogram and the edge information which generated with automatic threshold method. We consider scene's characteristics by using positions and colo distributions of object in each frame. We develop a hierarchical and a shot-based browser for video browsing. We also show that our proposed method is less sensitive to light effects and more robust to motion effects than previous ones like a histogram-based method by testing with various video data.

  • PDF

2D/3D image Conversion Method using Object Segmentation for decrease processing and Create Dept.h Map (연산량을 감소한 객체 분할과 깊이정보 생성을 이용한 2D/3D 동영상 변환 연구)

  • Han, Hyeon-Ho;Hong, Yeong-Pyo;Kim, Jin-Su;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.92-95
    • /
    • 2010
  • 본 논문에서는 2차원 영상을 3차원 영상으로 변환하여 입체감을 주는 방법을 제안하였다. 2D/3D 변환을 위해 Normalized Cut을 사용하여 객체를 분할하였고, 분할된 객체에 Optical Flow 값을 계산해 깊이정보를 생성하여 입체감을 주었다. 객체를 분할하기 위해 Normalized Cut을 이용한 방법에 Optical Flow를 이용한 가중치 값을 추가하여 정확한 객체 분할을 하였고, 처리속도 향상을 위해 영상의 밝기, 색상을 고려한 Watershed 알고리즘을 적용하여 연산량을 줄였다. 분할된 영상에 Optical Flow를 이용하여 색상 정보의 차이를 통해 객체별 고유벡터 값을 연산하여 객체의 움직임 정보를 추출하고 운동시차를 고려해 깊이 정보를 생성하였다. 제안한 방법으로 변환하기 위해 MATLAB을 사용하였다. 제안한 변환 방법은 2D/3D 입체변환에 효과적이었다.

  • PDF

Region-based Content Retrieval Algorithm Using Image Segmentation (영상 분할을 이용한 영역기반 내용 검색 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.1-11
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the region-based content retrieval(CBIR) algorithm based on an efficient combination of an image segmentation, an image texture, a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. We used active contour and CWT(complex wavelet transform) to perform an image segmentation and extracting an image texture. And shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(color histogram, Hu invariant moments, and complex wavelet transform) are combined and then precision and recall are measured. As a experimental result using DB that was supported by www.freefoto.com. the proposed image retrieval engine have 94.8% precision, 82.7% recall and can apply successfully image retrieval system.