• Title/Summary/Keyword: 색깔유도선

Search Result 2, Processing Time 0.018 seconds

Study on the Minimum Recursive Reflection Performance according to the Color of Road Surface (노면표시 색상에 따른 최소재귀반사성능 연구)

  • Han, Eum;Kang, Jong Ho;Kim, Cheong Ho;Park, Sungho;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.37-48
    • /
    • 2020
  • Eight colors prescribed by the Enforcement Rules of the Road Traffic Act and the group standard were tested to secure the minimum recursive reflectance performance standards when drying and wetting. The results were calculated to be 260.8 (mcd/㎡·lux) when drying white and 154.6 (mcd/㎡·lux) when wet. Yellow was 67% compared to the white reflective performance when drying. Wet poetry was 79 % and 59 %, respectively. In the case of blue, it was 64% in the case of white versus 72% in the case of white. Wet poetry was 63 % and 72 %, respectively. The range of changes in reflective performance during wetting was higher than when drying, and the absence of glass grains was similar to the previous results. The new colors also have a standard value of more than 50% compared to the white color in red, orange, pink, light green, and green. Based on this, it was estimated that the minimum reflective performance criteria according to the color of the road markings would form the basis for the enforcement rules of the Road Traffic Act.

Induction of Soft Tunic Syndrome by Water Temperature and Physiological and Histological Responses of the Sea Squirt, Halocynthia roretzi (수온에 의한 멍게(Halocynthia roretzi)의 물렁증 유도와 생리 및 조직학적 반응)

  • Shin, Yun Kyung;Park, Jung Jun;Myeong, Jeong In;Kim, Hyejin;Lee, Jung Sick
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.225-233
    • /
    • 2014
  • In this study, we investigated the changes in the physiological and histological traits of a sea squirt (Halocynthia roretzi) with the emergence of the soft tunic syndrome induced by the water temperature control (6, 9, 12, 15, 18, 21, 24 and $27^{\circ}C$). It was observed that the induction rate of the soft tunic syndrome was highest at $15^{\circ}C$, but lowest at $24^{\circ}C$. Based on the tunic color condition and contraction strength, the whole process were classified into 4 stages as S0, S1, S2 and S3. Interestingly, there were significant differences in oxygen consumption and filtration rate were observed during S0-S3. The most distinctive aspects were change of blood cell composition at stage S3, whereas multi-vacuole cell ratio was decreased by 1/2 and morula cell ratio expanded about 10 times during S0-S3. Further, change of organ structure started following the syndrome such as degeneration of epithelial cells, microfilaments, increment in hemocytes and damage in muscle fiber have been detected in tunic, siphon, branchial sac, body wall musculature and pyloric gland. Briefly, our study results indicated that the normal physiological functions of the sea squirt can be affected due to the soft tunic syndrome induced by water temperature.