• Title/Summary/Keyword: 색광

Search Result 59, Processing Time 0.025 seconds

The Reflection Color Light with the Structure of an Antireflection Lenses (렌즈 무반사막 구조에 의한 반사색광의 특성 연구)

  • Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • The optical system of lens must be designed to tramsmit light over wide wavelength range and to have lower reflectivity in order to obtain higher spectral transmittance. However, the reflection color light appears due to the remain-reflection light in any optical system of lens. The wavelength of the reflection color light can be controlled by the structure of the number of layers, thickness of layer, reflective index, wavelength of incidence, and substrate etc. In the optical systems of the single layer and the double layers, the reflection color light appears in the condition of the anti-reflection of ${\lambda}s/{\lambda}$ = 1.0 by the color mixture of the remain-reflection lights in the ranges of the longer wavelength side and the shorter one of the ${\lambda}s/{\lambda}$ = 1.0, and of the double layers and triple layers, the reflection color light positioned at P1 < ${\lambda}s/{\lambda}$ < P2 appears in the condition of the antireflection of ${\lambda}s/{\lambda}$ = $PI{\ll}1$ and $P2{\gg}1$. In the optical system of the multi-layers, many antireflection points are existed at the various s/ values, and the reflection color light by the color mixture of the remain-reflection lights in the ranges except for the antireflection points.

  • PDF

Response of Gray Rock Cod to the Colored Lights (색광에 대한 볼낙의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.330-334
    • /
    • 1983
  • The author carried out an experiment to find out the response of gray rock cod, Sebastes inermis (Cuvier et Valenciennes) to the color light. The experimental tank ($360L{\times}50W{\times}55H\;cm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of white, blue, yellow and red. The gathering rate of fish on illumination period was small and comparatively fluctuated with stability. The difference of the gathering rates on two different colors of light was much greater, regardless of illumination period, in day time than in night time.

  • PDF

Response of Rockfish to the Colored Lights (색광에 대한 조피볼낙의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.119-123
    • /
    • 1985
  • The author carried out an experiment to find out the response of rockfish, Sebastes schlegeli(Hilgendorf) to the color lights. The experimental tank($360L{\times}50W{\times}55H\;cm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20 W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, white, yellow and red in day time, and yellow, blue, white and red at night time. The gathering rate of fish on illumination period was not constant and fluctuated with irregularity. The difference of the gathering rate on two different colors of light was great and the difference was larger in day time than in night time.

  • PDF

Response of Rock Trout to the Colored Lights (색광에 대한 쥐노래미의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.6-10
    • /
    • 1984
  • The author carried out an experiment to find out the response of rock trout, Hexagrammos otakii (Jordan et starks) to the color lights. The experimental tank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe the loction of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were 3employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of white, yellow, red and blue in day time, and red, yellow, blue and white at night time. The gathering rate of fish on illumination period was small and comparatively fluctuated with stability. The difference of the gathering rates on two different colors of light was great.

  • PDF

Development of Light-Treatment Technology for Producing Tomato Transplants of High Quality -Effects of End-of-day Light Treatment Affecting on the Quality of Tomato Transplants- (고품질의 토마토묘 생산을 위한 광처리 기술개발 -일몰 후 광처리가 토마토묘 소질에 미치는 영향-)

  • 이귀현
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • To investigate the effect of red light (R) and far-red light(FR) on controlling the growth of tomato transplants, height, length of 1st internode, and stem diameter of plant were measured every 12 days during 24 days of light treatment. At the end of experiment, fresh and dry weights of roots and shoots were measured. Generally, it was shown that the height of plant was suppressed by the treatment of FR. However, the effect of light-treatment time (10 or 20 min) on plant height was not significant. Stem diameter of the plant treated with R was greater than that of the plant treated with FR or the control. Dry weight ratio of shoot to root of the plant treated with R was smaller that of the plant treated with FR. R was more effective than the control, which was more effective than FR, in making the transplant compact.

  • PDF

Response of Cat Shark to the Colored Lights (색광에 대한 두툽상어의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 1983
  • The author carried out an experiment to find out the response of cat shark, Scyliorhinus torazame(Tanaka) to the colored lights. The experimental thank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe th location of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The favorite color of the fish was found in the order of yellow, white, blue and red in day time, and red, blue, white and yellow at night time. The variation of the gathering rate on illumination time was very little and showed more stability in day time than at night time. The differences of the gathering rates to two selected colors out of the four colors were greater regardless of illumination time.

  • PDF

Phototaxis of Fish 7. Response of Sea-Bass to the Colored Lights (어류의 주광성에 관한 연구 7. 색광에 대한 농성어의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.151-156
    • /
    • 1987
  • The author carried out an experiment to find out the response of sea-bass, Epinephelus septemfasciatus (Thunberg) to the color lights. The experimental tank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20 W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, red, white and yellow in day time, and red, blue, yellow and white at night time. The gathering rate of fish on illumination period was not constant and fluctuated with irregularity. The difference of the gathering rate on two different colors of light was small and the difference was larger in night time then in day time.

  • PDF

Growth and Photomorphogenesis of Cucumber Plants under Artificial Solar and High Pressure Sodium Lamp with Additional Far-red Light (태양광 파장 유사 조합광과 원적색광이 추가된 고압나트륨등 하에서의 오이의 생육과 광형태형성)

  • Kang, Woo Hyun;Kim, Jae Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.86-93
    • /
    • 2019
  • Plant growth and morphology are affected by light environments. The morphogenesis and growth of the plants growing in plant factories are different from those grown under sunlight due to the effect of far-red light included in sunlight. The objective of this study was to compare the morphogenesis and growth of cucumber plants grown under artificial sunlight, high pressure sodium lamp (HPS), and HPS with additional far-red light (HPS+FR). The artificial solar (AS) with a spectrum similar to sunlight was manufactured using sulfur plasma lamp, incandescent lamp, and green-reducing optical film. HPS was used as a conventional electrical light source and far-red LEDs were added for HPS+FR. The optical properties of each light source was analyzed. The morphogenesis, growth, and photosynthetic rate were compared in each light source. The ratio of red to far-red lights and phytochrome photostationary state were similar in AS and HPS+FR. There were significant differences in morphology and growth between HPS and HPS+FR, but there were no significant differences between AS and HPS+FR. SPAD was highest in HPS, while photosynthetic rate was higher at AS and HPS. Although the photosynthetic rate in HPS+FR was lower than HPS, the growth was similar in AS. It was because canopy light interception was increased by longer petioles and larger leaf areas induced by FR. It is confirmed that the electrical light with additional far-red light induces similar photomorphogenesis and growth in sunlight spectrum. From the results, we expect that similar results will be obtained by adding far-red light to electrical light sources in plant factories.

Quantifying of Photon Flux Emitting from Light-emitting Diodes Using a Quantum Sensor and Spectroradiometer (광량자센서와 분광광도계를 이용한 발광다이오우드 광량자속의 정량화)

  • 김용현;박현수
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.223-229
    • /
    • 2000
  • This study was conducted to analyze the opto-electric characteristics of light-emitting diodes(LED) designed for growth and morphogenesis control of transplant and to quantify the photon flux emittig from LED using a quantum sensor spectroradiometer. Difference in photon flux for blue and red LED between measured by a quantum sensor and measured by a spectroradiometer and numerically integrated was not observed. This result implies a spectroradiometer can be applied to quantify the photon flux emitting from far-red LED, which can not be measured using a quantum sensor. Since photon flux increases in proportion to wavelength, photon flux of LED modules arranged for red and far-red increased in proportion to wavelength, photon flux of LED modules arranged for red and rar-red increased gradually as the number of LED stick emitting far-red in LEd modules increased. Illumination of LED modules arranged for red and far-red decreased as the number of LED stick emitting far-red in LED modules increased. There was no difference in irradiance between LED modules arranged for red and far-red.

  • PDF

Response of Filefish to the Colored Lights (색광에 대한 말쥐치의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 1984
  • The author carried out an experiment to find out the response of filefish, Navodon modestus(Gunther) to the colored lights. The experimental tank($360L{\times}50W{\times}55Hcm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before thor were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, white, yellow and red. The gathering rate of fish on illumination period was not constant but varied randomly. The difference of the gathering rates on two different colors of light was rather in significant, however the difference was larger in the day time than in the night time.

  • PDF