• Title/Summary/Keyword: 새발자국

Search Result 7, Processing Time 0.02 seconds

천연기념물 제395호 진주 가진리 새발자국과 공룡발자국 화석산지의 새로운 해석

  • Im, Jong-Deok;Gong, Dal-Yong;Kim, Gyeong-Su;Kim, Tae-Hyeong
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.21-21
    • /
    • 2010
  • 천연기념물 제395호 진주 가진리 새발자국과 공룡발자국 화석산지는 1997년 5월 20일, 경남과학교육원 신축 공사장에서 당시 경남과학고등학교 교사로 근무하던 백광석(현재 서상중고등학교 교장)에 의해 최초로 발견되어, 수 백 점의 새발자국 화석과 공룡발자국 화석들이 학계에 알려지게 되었다. 지금까지도 세계 여러나라의 중생대 새 발자국 중에서 가장 밀도가 높은 화석산지로 손꼽히고 있으며 많은 학자들의 관심을 받고 있다. 이곳의 지질은 백악기 하양층군 함안층 하부의 적색 이암 또는 셰일과 사암의 호층으로 구성되어 있고, 새발자국 화석들은 적색 이암에서 발견된다. 현재, 이 화석산지는 경남과학교육원 건물 내부에 위치하고 있으며, '화석문화재전시관'이라는 명칭으로 보호 및 관리되고 있기때문에 자연재해와 풍화에 의한 침식을 1차적으로 막고 있다. 이 화석산지는 우리나라에서는 천연기념물 제394호 해남 우항리 화석산지와 함께 현장을 그대로 보존하면서 화석의 보존과 관리를 동시에 할 수 있는 건물을 지어 자연사교육을 진행할 수 있는 곳으로 많은 학생들을 대상으로 우리나라의 소중한 화석을 직접 관찰하고 학습하는 체험교육이 가능하다. 원격조종카메라 시스템을 활용하여 관람객이 직접 자신이 원하는 발자국 화석을 세부적으로 관찰할 수 있게 장치한 interactive system은 과학교육 효과를 증진시킨다. 선행 연구에 의하면, 본 화석산지에서 익룡의 발자국 화석(KS 071)도 공룡이나 새발자국과 같은 층리면에서 서로 겹쳐서 나타난다고 보고되었으나, 본 연구에 의해 다시 조사된 결과 전형적인 익룡의 발자국 화석에서 보이는 분명한 특징들을 발견할 수 없었다. 물갈퀴를 가진 새발자국 가운데에서 Uhangrichnus chuni 와 Jindongornipes kimi 로 기재된 표본들에 대하여서도 새롭게 분석하였다. Uhangrichnus chuni로 기재된 많은 표본들은 II-IV번 발가락 사이의 각, 물갈퀴의 형태, 뚜렷한 hallux 등의 형태적 특징을 근거로 할 때, 대부분이 Ignotorinis yangi로 판단된다. Jindongornipes kimi로 기재된 표본들은 이미 기재된 표본보다 크기가 적어도 10%-25%가 작으며, II-IV번 발가락 사이의 각에서 차이를 보인다.

  • PDF

Application Experiments of Consolidation Treatment for Pelitic Sedimentary Rocks: Bird Track Fossils in Haman Formation (점토질 퇴적암의 강화처리 적용실험 연구: 함안층 새발자국 화석지)

  • Lee, Gyu Hye;Lee, Chan Hee;Yang, Hye Ri
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.87-98
    • /
    • 2020
  • The bird track fossil site in Haman Formation is divided into seven sedimental layers by the sedimentary structures, lithofacies and sequences. The bird tracks top on the highest layer, which includes ripple marks and suncracks. The layer has lithofacies with reddish grey siltstone and dark grey mudstone, alternately. As an analysis for the same rocks of the fossil site, physical properties show on mean values for 0.62% of absorption rate, 1.64% of porosity and 2.63 of specific gravity. Rock-forming minerals composed mainly of plagioclase, quartz, calcite, chlorite and mica. Meanwhile, we executed an experiments based on the petrography and weatherings to find a proper consolidants. In the experiments, the OH 100 reagent proved stable aspect and the lowest transition rate in terms of weight and chromaticity. Also, it showed the highest increase in ultrasonic velocity, improving the physical properties of the rocks. In the case of applying the OH 100 with antihygro, an swelling inhibitors on the sedimentary rocks, the chromaticity indicated an stable transition aspect. When it comes to the physical properties, the antihygro also decreases the porosity effectively. Thus, the most proper method for the fossil site of Haman Formation is to apply antihygro and OH 100 reagents since the rocks includes clay minerals that show swelling characteristics. However, this result is deduced from an indoor application experiments, leaving the necessity of verification how these reagents would affect the bird tracks site under the field condition.

Conservation Scientific Diagnosis and Evaluation of Bird Track Sites from the Haman Formation at Yongsanri in Haman, Korea (함안 용산리 함안층 새발자국 화석산지의 보존과학적 진단 및 평가)

  • Lee, Gyu Hye;Park, Jun Hyoung;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.74-93
    • /
    • 2019
  • The Bird Track Site in the Haman Formation in Yongsanri (Natural Monument No. 222) was reported on the named Koreanaornis hamanensis and Jindongornipes kimi sauropod footprint Brontopodus and ichnospecies Ochlichnus formed by Nematoda. This site has outstanding academic value because it is where the second-highest number of bird tracks have been reported in the world. However, only 25% of the site remains after being designated a natural monument in 1969. This is due to artificial damage caused by worldwide fame and quarrying for flat stone used in Korean floor heating systems. The Haman Formation, including this fossil site, has lithofacies showing reddish-grey siltstone and black shale, alternately. The boundary of the two rocks is progressive, and sedimentary structures like ripple marks and sun cracks can clearly be found. This site was divided into seven formations according to sedimentary sequences and structures. The results of a nondestructive deterioration evaluation showed that chemical and biological damage rates were very low for all formations. Also, physical damage displayed low rates with 0.49% on exfoliation, 0.04% on blistering, 0.28% on break-out; however, the joint crack index was high, 6.20. Additionally, efflorescence was observed on outcrops at the backside and the northwestern side. Physical properties measured by an indirect ultrasonic analysis were found to be moderately weathered (MW). Above all, the southeastern side was much fresher, though some areas around the column of protection facility appeared more weathered. Furthermore, five kinds of discontinuity surface can be found at this site, with the bedding plane showing the higher share. There is the possibility of toppling failure occurring at this site but stable on plane and wedge failure by means of stereographic projection. We concluded that the overall level of deterioration and stability were relatively fine. However, continuous monitoring and conservation treatment and management should be performed as situations such as the physicochemical weathering of the fossil layer, and the efflorescence of the mortar adjoining the protection facility's column appear to be challenging to control.

SHRIMP U-Pb Ages of Dinosaur and Bird Footprints found in Cretaceous Formation of Saok Island, Jeollanam-do, South Korea (전라남도 사옥도 백악기층에서 발견된 공룡과 새발자국 화석의 SHRIMP U-Pb 연대)

  • Kim, Cheong-Bin;Kim, Uijin;Park, Minsu;Hwang, Koo-Geun;Lee, Keewook
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • The geology of Saok island area in Jeollanam-do can be divided into 4 lithologic types: Jurassic granite, Cretaceous sedimentary rocks, acidic tuff and acidic dikes. In the Saok island area, dinosaur and web-footed bird footprints, arthropod trackway and silicified wood were found recently in the Cretaceous sedimentary rocks which composed of alternating light grey sandstone, shale and mudrock. The fossil-bearing sedimentary rock is overlain by an acidic tuff, and the sedimentary rock and acidic tuff are cut by acidic dykes. In order to constrain the depositional age of the Cretaceous sedimentary rocks in Saok island area, SHRIMP U-Pb zircon ages were determined in the tuffaceous sandstone and overlying acidic tuff. Zircon U-Pb ages of the sandstone and tuff are $83.58{\pm}0.86$ and $79.80{\pm}0.75Ma$, respectively, which belong to the Campanian of the Late Cretaceous. The U-Pb age of the acidic tuff indicates the eruption time of acidic tuff and thus the minimum age of the fossil-bearing sedimentary rocks in this area. Therefore, the formation age of the dinosaur and web-footed bird footprints can be constrained between 83.6 and 79.8 Ma.

K-Ar Ages of the Volcanic Rocks from the Cretaceous Strata in Gurye Area, Jeonnam Province, South Korea (전남 구례지역의 백악기층에 나타나는 화산암에 대한 K-Ar 연대)

  • Park, Ju-Hyun;Park, Da-Hyun;Won, Beom-Hee;Kang, Sung-Seung;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • This study aims to establish the age of the Cretaceous Togeum Formation in Gurye that reported the discovery of dinosaur eggshells and bones. This study also investigates to determine the period of the dinosaurs' dominance in the region. K-Ar ages are measured on the whole volcanic rocks in the lower - and upper parts of the formation. The six samples dated are volcanic pebbles deposited in the Geumjeongri Conglomerate that is distributed underneath the Togeum Formation, and the ages dated as Aptian ($118.3{\pm}2.3Ma$) or Albian ($103.6{\pm}2.0$, $102.5{\pm}2.0$, $99.9{\pm}1.9Ma$), which all correspond to the Early Cretaceous. In addition, the ages of andesites and porphyritic andesites overlying the Togeum Formation are dated in a similar way. The result is that the ages are apparently corresponding to the Campanian ($83.9{\pm}1.6$, $74.2{\pm}1.5$Ma) of the Late Cretaceous. Field evidence and the age results indicate that the formation of the Togeum and the activities of dinosaurs dated back between 84 and 100Ma. It suggests that the Togeum Formation be somewhat older than the Boseong Seonso Formation (81Ma) which contains egg shells, the Haenam Uhangni Formation (79-81 Ma) that has dinosaur, pterosaur and webbed bird footprints, and also older than the theropod egg nests (77-83Ma) found in the Aphaedo area.

K-Ar Ages of Dinosaur Egg Nest found in Cretaceous Formation of Aphaedo, Jeollanam-do, Korea (전라남도 압해도 백악기층에서 발견된 공룡알 둥지의 K-Ar 연대)

  • Rhee, Chan-Young;Kim, Bo-Seong;Kim, Myung-Gee;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.329-336
    • /
    • 2012
  • In September 2009, a perfectly preserved fossil of a dinosaur egg nest was discovered in the Cretaceous formations of the Aphaedo area in Shinan, Jeollanam-do, South Korea. In order to estimate the age of dinosaur eggshells and the depositional age of the Cretaceous sediments in Aphaedo area, a whole-rock K-Ar dating was carried out on volcanic pebbles showing a sedimentary structure contemporaneous with the Aphaedo strata, acidic tuffs overlaying the strata conformably, and acidic dike rocks intrude to both of them. Volcanic rocks observed in the strata are 3-20 cm in diameter as pebbles found in lenticular conglomerate and pebble bearing mudstone strata. K-Ar whole-rock dating was performed on six different volcanic pebbles which show a sedimentary structure contemporaneous with the dinosaur egg nest contained in the strata, and all samples show Late Cretaceous ages: Cenomanian ($97.6{\pm}1.9$Ma), Coniacian ($87.6{\pm}1.7$ Ma), Santonian ($84.5{\pm}1.7$Ma) or Campanian ($82.5{\pm}1.6$, $77.3{\pm}1.5$, $75.7{\pm}1.5$ Ma). The K-Ar whole-rock age of acidic tuffs overlaying the Cretaceous formation conformably was estimated to be Campanian ($79.2{\pm}1.6$ or $77.3{\pm}1.5$Ma), when the dating was carried out under the same conditions. The acidic dike intruding both Cretaceous formation and acidic tuff showed a K-Ar whole-rock age of $70.9{\pm}1.4$Ma (Campanian). Therefore, the depositional age of the Cretaceous formation in the Aphaedo area and the time when dinosaurs lived in the study area are considered to be 77-83 Ma. Such results indicate that the ages of dinosaur eggshells from Aphaedo area can be correlated with the ages of the Seonso Formation (81Ma) with dinosaur egg nest fossils and the Uhangri Formation (79-81Ma) with dinosaur, pterosaur and web-footed bird tracks.

A petrological study on the formation of geological heritage around Sangjogam County Park, Goseong, Gyeongsangnam-do (천연기념물 제411호 경남 고성 덕명리 공룡화석 산지 일원 병풍바위의 형성에 관한 암석학적 연구)

  • Kong, Dal-Yong;Cho, Hyeong-Seong;Kim, Jae-Hwan;Yu, Yeong-Wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Kim, Jong-Sun;Jeong, Jong-Ok;Kim, Kun-Ki;Kwon, Chang-Woo;Son, Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.78-91
    • /
    • 2018
  • Sangjogam, located in Goseong, Gyeongsangnam-do, was designated as Natural Monument #411, because of its diverse geological heritage, such as fossils, ripple marks, dykes, and columnar joints. In the area, Byeongpungbawi, with its beautiful columnar joints vertical to the bedding plane of the underlying sedimentary rocks and spectacular coastal view, was named after its overall shape reminiscent of a huge folding screen. The purpose of this study was to investigate the formation process of the columnar joints using the anisotropy of magnetic susceptibility (AMS) method. AMS measurements showed that the k1 and k3 values representative of directions of the long and short axes of a magnetic particle at each point strongly clustered, and the oblate magnetic foliation structure in Byeongpungbawi developed during sill-type intrusion rather than lava flow. In summary, Byeongpungbawi was produced by sill-type intrusion along the bedding plane of the underlying sedimentary layer, and the subsequent formation of columnar joints was accompanied by the cooling and contraction of intruding rhyolite magma. This study potentially provides a basic research tool in understanding the formation mechanism of columnar joints which are widely distributed in southern Korea.