• Title/Summary/Keyword: 상.하부 ㄱ형강 접합부

Search Result 3, Processing Time 0.021 seconds

Experimental Tests and Analytical Study for the Prediction of the Plastic Moment Capacity of an Unstiffened Top and Seat Angle Connection (무보강 상·하부 ㄱ형강 접합부의 소성휨모멘트 저항능력 예측을 위한 실험 및 해석적 연구)

  • Yang, Jae-Guen;Choi, Jung-Hwan;Kim, Hyun-Kwang;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2011
  • An unstiffened top and seat angle connection is a type of partially restrained connection that is suitable for low- and medium-rise steel buildings. The plastic moment resisting capacity of such connection is needed in practical design, in addition to the accurate prediction of the initial rotational stiffness. Therefore, most of the studies conducted for the mentioned connections were performed to predict the initial stiffness and the plastic moment resisting capacity with varying geometric properties. The main parameters of such experimental tests were the thickness and high-strength bolt gauge distance of AISC LRFD-type A top and seat angle connections. Based on the test results, the analytical model was also proposed in this study. The applicability of the proposed model was verified by comparing the test results from this study with those of other studies.

Seismic Performance of Top and Seat Angle CFT Column-to-Beam Connections with SMA (SMA 적용 상·하부 ㄱ형강 CFT 기둥-보 접합부의 내진성능)

  • Kim, Joo-Woo;Lee, Sung Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.423-434
    • /
    • 2017
  • In this paper a systematic numerical analysis is performed to obtain the hysteresis behavior of partially restrained top and seat angle connections subjected to cyclic loading. This connection includes superelastic shape memory alloy (SMA) angles and rods in order to secure the recentering capacities as well as proper energy dissipation effects of a CFT composite frame. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity and failure modes. A wide scope of additional structural behaviors explain the different influences of the connection's parameters, such as the various thickness of connection angles and the gage distance of steel and SMA rods.

Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle (상·하부 ㄱ형강 반강접 CFT 기둥-보 접합부의 단조 및 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In this paper a systematic numerical analysis is performed to obtain the bending moment resisting capacity of a top and seat angle connection, which is a type of partially restrained connection, for a CFT composite frame subjected to cyclic loading. This partially restrained composite CFT connections are fabricated using high strength steel connection bar. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes. A wide scope of additional structural behaviors explain the different influences of the top and seat angle connection's parameters, such as the different thickness of connection angles and the gage distances of the high strength steel bar. The moment-rotation angle relationships obtained from the finite element analysis are compared with those from Richard's theoretical equation.