• Title/Summary/Keyword: 상하운동감쇠판

Search Result 4, Processing Time 0.02 seconds

Study on the Shape of Appendage for the Reduction of Motion of Floating Wind Turbine Platforms (부유식 풍력 하부구조물의 운동 저감을 위한 부가물 형상 연구)

  • Dae-Won Seo;Jaehyeon Ahn;Jungkeun Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1201-1208
    • /
    • 2022
  • In general, to maximize the supply and efficiency of floating offshore wind power generation energy, the motion caused by wave attenuation of the substructure must be reduced. According to previous studies, the motion response was reduced due to the vortex viscosity generated by the damping plate installed in the lower structure among the waves. In this study, a 5 MW semi-submersible OC5 platform and two platforms with attenuation plates were designed, and free decay experiments and numerical calculations were performed to confirm the effect of reducing motion due to vortex viscosity. As a result of the model test, when the heave free decay tests were conducted at drop heights of 30 mm, 40 mm, and 50 mm, compared with the OC5 platform, the platform with two types of damping plates attached had relatively improved motion damping performance. In the model test and numerical calculation results, the damping plate models, KSNU Plate 1 and KSNU Plate 2, were 1.1 times and 1.3 times lower than OC5, respectively, and the KSNU Plate 2 platform showed about two times better damping performance than OC5. This study shows that the area of the damping plate and the vortex viscosity are closely related to the damping rate of the heave motion.

Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate (감쇠판에 의한 원기둥의 상하운동 저감 모형시험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • JO HYO-JAE;GOO JA-SAM;CHOI HAN-SUK;PARK JU-YONG;OH TAE-WON;KIM BYUNG-WOO;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.16-21
    • /
    • 2004
  • This study presents the wave forces for spar platforms. The advantage of a spar platform is that it is easy to manufacture and has excellent to motion characteristics. It is important to precisely determine the wave force acting on spar platforms for their basic design of them. We measur the wave exciting force for both the classic spar and truss spar models, and accomplish the numerical calculation using diffraction theory. The results show that experimental values have good agreement with theoretical values. However it is difficult to accurately estimate the value considering the heave plate of truss spar due to the viscosity.

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • Jo, Hyo-Jae;Goo, Ja-Sam;Oh, Tae-Won;Kim, Byung-Won;Ha, Mun-Keun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.261-266
    • /
    • 2002
  • This study presents the wave forces for spar platforms. The advantage of spar platform is that it is easy to manufacture and excellency to motion characteristics. It is important to estimate exactly wave force acting spar platforms for basic design of them. We measured the wave exciting force for classic spar and truss spar model, and accomplished the numerical calculation using diffraction theory. The results show that experimental values are good agreement with theoretical values. But it is difficult to estimate accurate value considering the heave plate of truss spar due to the viscosity.

  • PDF